题目内容

【题目】已知函数f(x)=sin(ωx+φ)(其中ω>0|φ|< )图象相邻对称轴的距离为 ,一个对称中心为(﹣ ,0),为了得到g(x)=cosωx的图象,则只要将f(x)的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

【答案】D
【解析】解:由题意可得函数的最小正周期为 =2× ,∴ω=2.
再根据﹣ ×2+φ=kπ,|φ|< ,k∈z,可得φ= ,f(x)=sin(2x+ ),
故将f(x)的图象向左平移 个单位,可得y=sin[2(x+ )+ ]=sin(2x+ )=cos2x的图象,
故选:D.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网