题目内容

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (θ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=sinθ+cosθ,曲线C3的极坐标方程为θ=
(1)把曲线C1的参数方程化为极坐标方程;
(2)曲线C3与曲线C1交于O、A,曲线C3与曲线C2交于O、B,求|AB|

【答案】
(1)解:曲线C1的普通方程为(x﹣1)2+y2=1,即x2+y2﹣2x=0

由x=ρcosθ,y=ρsinθ,得ρ2﹣2ρcosθ=0

所以曲线C1的极坐标方程为ρ=2cosθ


(2)解:设点A的极坐标为 ,点B的极坐标为 ,则

所以


【解析】(1)先把参数方程转化为普通方程,利用由x=ρcosθ,y=ρsinθ可得极坐标方程,(2)利用|AB|=|ρ1﹣ρ2|即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网