题目内容

【题目】如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.

【答案】解:(Ⅰ)在△ABC中,∵a=b(sinC+cosC),
∴sinA=sinB(sinC+cosC),
∴sin(π﹣B﹣C)=sinB(sinC+cosC),
∴sin(B+C)=sinB(sinC+cosC),
∴sinBcosC+cosBsinC=sinBsinC+sinBcosC,
∴cosBsinC=sinBsinC,
又∵C∈(0,π),故sinC≠0,
∴cosB=sinB,即tanB=1.
又∵B∈(0,π),

(Ⅱ)在△BCD中,DB=2,DC=1,
∴BC2=12+22﹣2×1×2×cosD=5﹣4cosD.
,由(Ⅰ)可知
∴△ABC为等腰直角三角形,

又∵

∴当 时,四边形ABDC的面积有最大值,最大值为

【解析】(Ⅰ)利用正弦定理,三角函数恒等变换的应用化简已知可得cosBsinC=sinBsinC,结合sinC≠0,可求tanB=1,结合范围B∈(0,π),即可求得B的值.(Ⅱ)由已知利用余弦定理可得BC2=12+22﹣2×1×2×cosD=5﹣4cosD,由已知及(Ⅰ)可知 ,利用三角形面积公式可求SABC , SBDC , 从而可求 ,根据正弦函数的性质即可得解四边形ABDC面积的最大值.
【考点精析】通过灵活运用正弦定理的定义和余弦定理的定义,掌握正弦定理:;余弦定理:;;即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网