题目内容
【题目】已知各项均不相等的等差数列的前五项和,且成等比数列.
(1)求数列的通项公式;
(2)若为数列的前项和,且存在,使得成立,求实数的取值范围.
【答案】(1);(2).
【解析】
试题分析:(1)用基本量法,即用表示已知条件,列出方程组,求出即可求数列的通项公式;(2)用裂项相消法求数列的前项和,列出不等式参变分离得,由基本不等式求的最小值即可.
试题解析: (1)设数列的公差为,则
即………………2分
又因为,所以………………4分
所以.………………5分
(2)因为,
所以.………………7分
因为存在,使得成立,
所以存在,使得成立,
即存在,使成立.………………9分
又,(当且仅当时取等号),
所以.
即实数的取值范围是.………………12分
【题目】某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
Ⅰ.请完成上面的列联表;
Ⅱ.根据列联表的数据,是否有的把握认为“成绩与班级有关系”.
参考公式与临界值表:.
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数).
(1)求曲线的普通方程;
(2)经过点(平面直角坐标系中点)作直线交曲线于两点,若恰好为线段的三等分点,求直线的斜率.
【题目】为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某农科所记录了5组昼夜温差与100颗种子发芽数,得到如下资料:
组号 | 1 | 2 | 3 | 4 | 5 |
温差() | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
该所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求出线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是第1组与第5组的两组数据,请根据第2组至第4组的数据,求出关于的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(参考公式:,)