题目内容
【题目】如图,在梯形中,,,,四边形为矩形,平面平面,.
(1)求证:平面;
(2)在线段上是否存在点,使得平面与平面所成锐二面角的平面角为,且满足?若不存在,请说明理由;若存在,求出的长度.
【答案】(1)见解析(2)在线段上存在点满足题意,.
【解析】
(1)如图所示的等腰梯形中,经过点,分别作,,垂足为.利用矩形的性质可求出,在中,利用余弦定理可得,利用勾股定理的逆定理可得,再利用面面垂直的性质定理即可证明平面;
(2)如图所示,建立空间直角坐标系.设,设平面的法向量,可得,取平面的法向量,利用,,即可求出.
(1)如图所示的等腰梯形中,经过点,分别作,,垂足为,则为矩形,.在中,,则,
同理可得,.
在中,,
,,.
又∵四边形为矩形,平面平面,
平面平面,∴平面.
(2)如图所示,建立空间直角坐标系.
,,,设,
,
设平面的法向量,
则,∴
取.
取平面的法向量.
由,
由题意可得:,.
解得.
因此在线段上点,使得平面与平面所成锐二面角的平面角为,且满足,.
【题目】一项针对都市熟男(三线以上城市,岁男性)消费水平的调查显示,对于最近一年内是否购买过以下七类高价商品,全体被调查者,以及其中包括的1980年及以后出生(80后)被调查者,1980年以前出生(80前)被调查者回答“是”的比例分别如下:
全体被调查者 | 80后被调查者 | 80前被调查者 | |
电子产品 | 56.9% | 66.0% | 48.5% |
服装 | 23.0% | 24.9% | 21.2% |
手表 | 14.3% | 19.4% | 9.7% |
运动、户外用品 | 10.4% | 11.1% | 9.7% |
珠宝首饰 | 8.6% | 10.8% | 6.5% |
箱包 | 8.1% | 11.3% | 5.1% |
个护与化妆品 | 6.6% | 6.0% | 7.2% |
以上皆无 | 25.3% | 17.9% | 32.1% |
根据表格中数据判断,以下分析错误的是( )
A. 都市熟男购买比例最高的高价商品是电子产品
B. 从整体上看,80后购买高价商品的意愿高于80前
C. 80前超过3成一年内从未购买过表格中七类高价商品
D. 被调查的都市熟男中80后人数与80前人数的比例大约为
【题目】为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:
直径/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | |
直径/mm | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(I)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率):①;②;③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部都不满足,则等级为丁.试判断设备的性能等级.
(Ⅱ)将直径尺寸在之外的零件认定为是“次品”,将直径尺寸在之外的零件认定为“突变品”.从样本的“次品”中随意抽取两件,求至少有一件“突变品”的概率.