题目内容
【题目】如图,在直三棱柱中,底面为等边三角形, .
(Ⅰ)求三棱锥的体积;
(Ⅱ)在线段上寻找一点,使得,请说明作法和理由.
【答案】(1) (2)见解析
【解析】试题分析:(1)取BC中点E连结AE,三棱锥C1﹣CB1A的体积,由此能求出结果.(2)在矩形BB1C1C中,连结EC1,推导出Rt△C1CE∽Rt△CBF,从而CF⊥EC1,再求出AE⊥CF,由此得到在BB1上取F,使得,连结CF,CF即为所求直线.
解析:(1)取中点连结.在等边三角形中, ,
又∵在直三棱柱中,侧面面,
面面,∴面,
∴为三棱锥的高,又∵,∴,
又∵底面为直角三角形,∴,
∴三棱锥的体积
(2)作法:在上取,使得,连结, 即为所求直线.
证明:如图,在矩形中,连结,
∵, ,∴,
∴,∴,
又∵,∴,∴,
又∵面,而面,∴,
又∵,∴面,
又∵面,∴.
练习册系列答案
相关题目