题目内容
【题目】已知函数为二次函数,不等式的解集是,且在区间上的最大值为12.
(1)求的解析式;
(2)设函数在上的最小值为,求的表达式及的最小值.
【答案】(1).(2).最小值
【解析】
(1)根据是二次函数,且的解集是可设出的零点式,再根据在区间上的最大值在对称轴处取得为12即可算出对应的参数.
(2)由(1)求得后改写成顶点式,再根据对称轴与区间的位置关系,分情况进行讨论即可.
(1)是二次函数,且的解集是,
∴可设,
可得在区间在区间上函数是减函数,区间上函数是增函数.
∵,,,
∴在区间上的最大值是,得.
因此,函数的表达式为.
(2)由(1)得,函数图象的开口向上,对称轴为,
①当时,即时,在上单调递减,
此时的最小值;
②当时,在上单调递增,
此时的最小值;
③当时,函数在对称轴处取得最小值,
此时,,
综上所述,得的表达式为,
当,取最小值
练习册系列答案
相关题目