题目内容
2.已知a>0,函数f(x)=-asin2x-$\sqrt{3}acos2x+b(x∈[0,\frac{π}{2}])$的值域为[-5,1],则a,b的值为6$(2-\sqrt{3})$,12$\sqrt{3}$-23..分析 函数f(x)=-asin2x-$\sqrt{3}$acos2x+b=2a$sin(2x-\frac{π}{3})$+b,(a>0).利用x∈$[0,\frac{π}{2}]$,及其三角函数的单调性即可得出.
解答 解:函数f(x)=-asin2x-$\sqrt{3}$acos2x+b
=2a$sin(2x-\frac{π}{3})$+b,(a>0).
∵x∈$[0,\frac{π}{2}]$,
∴$-\frac{π}{3}$≤$2x-\frac{π}{3}$≤$\frac{2π}{3}$,
∴$-\frac{\sqrt{3}}{2}$≤$sin(2x-\frac{π}{3})$≤1,
∵a>0,
∴当$sin(2x-\frac{π}{3})$=1,函数f(x)取得最大值1,∴2a+b=1;
当$sin(2x-\frac{π}{3})$=$-\frac{\sqrt{3}}{2}$,函数f(x)取得最小值1,∴-$\sqrt{3}$a+b=-5.
联立$\left\{\begin{array}{l}{2a+b=1}\\{-\sqrt{3}a+b=-5}\end{array}\right.$,
解得a=6$(2-\sqrt{3})$,b=12$\sqrt{3}$-23.
故答案分别为:6$(2-\sqrt{3})$,b=12$\sqrt{3}$-23.
点评 本题考查了三角函数的单调性、函数的值域,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
10.已知实数x,y满足条件$\left\{\begin{array}{l}{4{x}^{2}-{y}^{2}≥0}\\{x+ay+b≤0}\\{x≥0}\end{array}\right.$,z=x-y的最大值、最小值分别为M、m,且M-m=1,则a+b的取值范围为( )
A. | [$\frac{3\sqrt{3}}{2}$-2,$\frac{\sqrt{3}}{2}$) | B. | (-$\frac{1}{2}$,$\frac{1}{2}$) | C. | [$\sqrt{6}$-3,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,$\frac{23}{10}$) |
7.若关于x的方程ax2+bx+c=0(a,b,c∈R且a≠0)有实根,且不等式(a-b)2+(b-c)2+(c-a)2≥ma2恒成立,则实数m的最大值为( )
A. | $\frac{9}{16}$ | B. | $\frac{3}{4}$ | C. | 1 | D. | $\frac{9}{8}$ |
14.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{3{x}^{2},x∈[\frac{1}{2},1]}\end{array}\right.$,若存在常数t使得方程f(x)=t有两个不等的实根x1,x2(x1<x2),那么x1•f(x2)的取值范围为( )
A. | [$\frac{3}{4}$,1) | B. | [$\frac{1}{8}$,$\frac{\sqrt{3}}{6}$) | C. | [$\frac{3}{16}$,$\frac{1}{2}$) | D. | [$\frac{3}{8}$,3) |