题目内容

5.已知数列{bn}中,b1=0,bn+1=3bn+2(n∈N),数列{an}的前n项和为Sn,且Sn-1=bn
(1)求an
(2)求数列{$\frac{{3}^{n}}{{b}_{n+1}{b}_{n+2}}$}的前n(n∈N)项的和;
(3)数列{nan}的前n项和Tn,求Tn-(n-$\frac{1}{2}$)•3n-1

分析 (1)由bn+1=3bn+2(n∈N),变形为bn+1+1=3(bn+1),利用等比数列的通项公式可得bn,于是Sn=bn+1,利用当n=1时,a1=S1;当n≥2时,an=Sn-Sn-1,可得an
(2)$\frac{{3}^{n}}{{b}_{n+1}{b}_{n+2}}$=$\frac{{3}^{n}}{({3}^{n}-1)({3}^{n+1}-1)}$=$\frac{1}{2}(\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1})$.利用“裂项求和”即可得出.
(3)nan=$\left\{\begin{array}{l}{1,n=1}\\{2n×{3}^{n-2},n≥2}\end{array}\right.$.利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(1)由bn+1=3bn+2(n∈N),变形为bn+1+1=3(bn+1),
∴数列{bn+1}是等比数列,首项为1,公比为3.
∴bn+1=3n-1
∴bn=3n-1-1,
∴Sn=bn+1=3n-1
当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=3n-1-3n-2=2×3n-2
∴an=$\left\{\begin{array}{l}{1,n=1}\\{2×{3}^{n-2},n≥2}\end{array}\right.$.
(2)$\frac{{3}^{n}}{{b}_{n+1}{b}_{n+2}}$=$\frac{{3}^{n}}{({3}^{n}-1)({3}^{n+1}-1)}$=$\frac{1}{2}(\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1})$.
∴数列{$\frac{{3}^{n}}{{b}_{n+1}{b}_{n+2}}$}的前n(n∈N)项的和=$\frac{1}{2}[(\frac{1}{3-1}-\frac{1}{{3}^{2}-1})$+$(\frac{1}{{3}^{2}-1}-\frac{1}{{3}^{3}-1})$+…+$(\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1})]$=$\frac{1}{2}(\frac{1}{2}-\frac{1}{{3}^{n+1}-1})$.
(3)nan=$\left\{\begin{array}{l}{1,n=1}\\{2n×{3}^{n-2},n≥2}\end{array}\right.$.
当n=1时,T1=1.
当n≥2时,Tn=1+2(2+3×3+4×32+…+n×3n-2),
∴3Tn=3+2[2×3+3×32+…+(n-1)×3n-2+n×3n-1],
∴-2Tn=-2+2(2+3+32+…+3n-2-n×3n-1),
∴Tn=1-$(1+\frac{{3}^{n-1}-1}{3-1}-n×{3}^{n-1})$=$\frac{(2n-1)•{3}^{n-1}+1}{2}$.
当n=1时,上式也成立.
∴Tn=$\frac{(2n-1)•{3}^{n-1}+1}{2}$.
∴Tn-(n-$\frac{1}{2}$)•3n-1=$\frac{(2n-1)•{3}^{n-1}+1}{2}$-$\frac{(2n-1)•{3}^{n-1}}{2}$=$\frac{1}{2}$.

点评 本题考查了递推关系的应用、“裂项求和”、“错位相减法”、等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网