题目内容

【题目】已知函数

(Ⅰ)若,求证:函数在(1+∞)上是增函数;

(Ⅱ)求函数[1e]上的最小值及相应的.

【答案】(Ⅰ)函数f(x)在(1,+∞)上是增函数;(Ⅱ)见解析.

【解析】试题分析:)代入,求导,通过导数恒为正值进行证明;()求导,通过讨论参数的取值,研究函数的极值点与所给区间的关系,进而研究函数在所给区间上的单调性和极值、最值进行求解.

试题解析:(Ⅰ)当a=﹣2时,f(x)=x2﹣2lnx,当x∈(1,+∞),,故函数f(x)在(1,+∞)上是增函数.

(Ⅱ),当x∈[1,e],2x2+a∈[a+2,a+2e2].

a≥﹣2,f'(x)在[1,e]上非负(仅当a=﹣2,x=1时,f'(x)=0),

故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1.

若﹣2e2<a<﹣2,当时,f'(x)=0;当时,f'(x)<0,

此时f(x)是减函数;当时,f'(x)>0,此时f(x)是增函数.

[f(x)]min==

a≤﹣2e2,f'(x)在[1,e]上非正(仅当a=﹣2e2,x=e时,f'(x)=0),

故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2

综上可知,当a≥﹣2时,f(x)的最小值为1,相应的x值为1;

当﹣2e2<a<﹣2时,f(x)的最小值为,相应的x值为

a≤﹣2e2时,f(x)的最小值为a+e2,相应的x值为e

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网