题目内容

定义:对于函数若在定义域内存在实数,满足,则称为“局部奇函数”.

1)已知二次函数试判断是否为定义域上的“局部奇函数”?若是,求出满足的值;若不是,请说明理由;

2)若是定义在区间上的“局部奇函数”,求实数的取值范围;

3)若为定义域上的“局部奇函数”,求实数的取值范围.

 

1)是“局部奇函数”;(2;(3.

【解析】

试题分析:(1)利用局部奇函数的定义,建立方程关系,然后判断方程是否有解,有解则是“局部奇函数”,若无解,则不是;(2)(3)都是利用“局部奇函数的定义”,建立方程关系,并将方程有解的问题转化成二次方程根的分布问题,从而求出各小问参数的取值范围.

试题解析:(1)当,方程,有解

所以为“局部奇函数”

2)法一:当时,可化为

因为的定义域为,所以方程上有解

,则,设,则上为减函数,在上为增函数,所以当时,,所以,即

法二:当时,可化为

因为的定义域为,所以方程上有解

,则关于的二次方程上有解即可保证为“局部奇函数”

,当方程上只有一解时,须满足,解之得(舍去,因为此时方程在区间有两解,不符合这种情况)或

当方程上两个不等的实根时,须满足

,综上可知

3为定义域上的局部奇函数

,可化为

,

从而有解,即可保证局部奇函数

,有解,,解得

,有解等价于

解得;综上可知.

考点:1.新定义;2.函数与方程;3.一元二次方程根的分布问题.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网