题目内容
17.计算:${∫}_{0}^{1}$(x3cosx)dx=6-5sin1-3cos1.分析 通过分部积分法计算即可.
解答 解:${∫}_{0}^{1}({x}^{3}cosx)dx$=${∫}_{0}^{1}{x}^{3}dsinx$
=${x}^{3}sinx|\left.\begin{array}{l}{1}\\{0}\end{array}\right.$-3${∫}_{0}^{1}(sinx{)x}^{2}dx$
=sin1+3${∫}_{0}^{1}{x}^{2}dcosx$
=sin1+3(${x}^{2}cosx|\left.\begin{array}{l}{1}\\{0}\end{array}\right.$-2${∫}_{0}^{1}(cosx)xdx$)
=sin1+3cos1-6${∫}_{0}^{1}xdsinx$
=sin1+3cos1-6($xsinx|\left.\begin{array}{l}{1}\\{0}\end{array}\right.$-${∫}_{0}^{1}sinxdx$)
=sin1+3cos1-6(sin1+$cosx|\left.\begin{array}{l}{1}\\{0}\end{array}\right.$)
=sin1+3cos1-6sin1-6cos1+6
=6-5sin1-3cos1.
点评 本题考查定积分的运算,利用分部积分法是解决本题的关键,属于中档题.
练习册系列答案
相关题目