题目内容
9.设变量x,yi满足约束条件$\left\{\begin{array}{l}{x-y+3≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=x+2y的最大值为( )A. | 21 | B. | 15 | C. | -3 | D. | -15 |
分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答 解:作出不等式对应的平面区域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直线y=-$\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线y=-$\frac{1}{2}x+\frac{z}{2}$经过点B时,
直线y=-$\frac{1}{2}x+\frac{z}{2}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x-y+3=0}\\{x=3}\end{array}\right.$,得$\left\{\begin{array}{l}{x=3}\\{y=6}\end{array}\right.$,
即B(3,6),
此时z的最大值为z=3+2×6=15,
故选:B.
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
练习册系列答案
相关题目
4.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A、B满足$\overrightarrow{MA}$=$\overrightarrow{AB}$,则t的取值范围是( )
A. | [-2,2] | B. | [-$\sqrt{5}$,$\sqrt{5}$] | C. | [-3,3] | D. | [-5,5] |
1.设a=-1,b=2log3m,那么“a=b”是“$m=\frac{{\sqrt{3}}}{3}$”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |