题目内容
5.已知数列{an}满足:a1=1,a2=3,a n+1-$\frac{2}{{a}_{n}}$=an-$\frac{2}{{a}_{n-1}}$(n≥2,n∈N*)(2)若bn=$\frac{1}{1+{a}_{n}}$,求数列{bn}的通项公式;
(2)求证:$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+…+$\frac{1}{1+{a}_{n}}$≥$\frac{n}{3}$+$\frac{1}{12}$(n∈N*);
(3)求证:|a1-2|+|a2-2|+…+|an-2|<3(n∈N*).
分析 (1)通过a n+1-$\frac{2}{{a}_{n}}$=an-$\frac{2}{{a}_{n-1}}$,a1=1,a2=3,可得bn+1=$\frac{1}{2}$-$\frac{1}{2}{b}_{n}$,进而$\frac{{b}_{n+1}-\frac{1}{3}}{{b}_{n}-\frac{1}{3}}=-\frac{1}{2}$,计算可得bn=$\frac{1}{3}$+(-1)n$\frac{1}{3×{2}^{n+1}}$;
(2)通过(1)知数列{${b}_{n}-\frac{1}{3}$}得前n项和Tn=$\frac{1}{9}[1-(-\frac{1}{2})^{n}]$,从而$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+…+$\frac{1}{1+{a}_{n}}$=$\frac{1}{9}[1-(-\frac{1}{2})^{n}]$+$\frac{n}{3}$,利用$1-(-\frac{1}{2})^{n}$≥1$-(-\frac{1}{2})^{2}$=$\frac{3}{4}$,可得结论;
(3)通过计算可得$\frac{1}{1+{a}_{n}}$=$\frac{{2}^{n+1}+(-1)^{n}}{3×{2}^{n+1}}$,进而|an-2|=$\left\{\begin{array}{l}{\frac{3}{{2}^{2k}-1},}&{n=2k-1}\\{\frac{3}{{2}^{2k+1}+1},}&{n=2k}\end{array}\right.$(k∈N*),分别对|a1-2|+|a2-2|+…+|an-2|中奇数项和偶数项利用放缩法可得结论.
解答 (1)解:∵a n+1-$\frac{2}{{a}_{n}}$=an-$\frac{2}{{a}_{n-1}}$,a1=1,a2=3,
∴an+1-$\frac{2}{{a}_{n-1}}$=3-2=1,∴an+1+1=$2+\frac{2}{{a}_{n}}$=$\frac{2{a}_{n}+2}{{a}_{n}}$,
∴bn+1=$\frac{1}{1+{a}_{n+1}}$=$\frac{1}{2}•\frac{1+{a}_{n}-1}{1+{a}_{n}}$=$\frac{1}{2}$-$\frac{1}{2}•\frac{1}{1+{a}_{n}}$=$\frac{1}{2}$-$\frac{1}{2}{b}_{n}$,
∴bn+1-$\frac{1}{3}$=$-\frac{1}{2}({b}_{n}-\frac{1}{3})$,即$\frac{{b}_{n+1}-\frac{1}{3}}{{b}_{n}-\frac{1}{3}}=-\frac{1}{2}$,
又∵${b}_{1}-\frac{1}{3}$=$\frac{1}{1+{a}_{1}}-\frac{1}{3}$=$\frac{1}{6}$,
∴数列{${b}_{n}-\frac{1}{3}$}是以$\frac{1}{6}$为首项、$-\frac{1}{2}$为公比的等比数列,
则${b}_{n}-\frac{1}{3}$=$\frac{1}{6}$×$(-\frac{1}{2})^{n}$=(-1)n$\frac{1}{3×{2}^{n+1}}$,即bn=$\frac{1}{3}$+(-1)n$\frac{1}{3×{2}^{n+1}}$;
(2)证明:由(1)知,数列{${b}_{n}-\frac{1}{3}$}是以$\frac{1}{6}$为首项、$-\frac{1}{2}$为公比的等比数列,
故数列{${b}_{n}-\frac{1}{3}$}得前n项和Tn=$\frac{\frac{1}{6}[1-(-\frac{1}{2})^{n}]}{1+\frac{1}{2}}$=$\frac{1}{9}[1-(-\frac{1}{2})^{n}]$,
∴$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+…+$\frac{1}{1+{a}_{n}}$=Tn+$\frac{n}{3}$=$\frac{1}{9}[1-(-\frac{1}{2})^{n}]$+$\frac{n}{3}$,
∵$1-(-\frac{1}{2})^{n}$≥1$-(-\frac{1}{2})^{2}$=$\frac{3}{4}$,
∴$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+…+$\frac{1}{1+{a}_{n}}$≥$\frac{n}{3}$+$\frac{1}{9}×\frac{3}{4}$=$\frac{n}{3}+$$\frac{1}{12}$;
(3)证明:∵$\frac{1}{1+{a}_{n}}$=bn=$\frac{1}{3}$+(-1)n$\frac{1}{3×{2}^{n+1}}$=$\frac{{2}^{n+1}+(-1)^{n}}{3×{2}^{n+1}}$,
∴1+an=$\frac{3×{2}^{n+1}}{{2}^{n+1}+(-1)^{n}}$,∴an-2=$-\frac{3×(-1)^{n}}{{2}^{n+1}+(-1)^{n}}$,
∴|an-2|=$\left\{\begin{array}{l}{\frac{3}{{2}^{2k}-1},}&{n=2k-1}\\{\frac{3}{{2}^{2k+1}+1},}&{n=2k}\end{array}\right.$(k∈N*),
记Qn=|a1-2|+|a2-2|+…+|an-2|,
则Qn中奇数项的和M奇=$\frac{3}{{2}^{2}-1}+\frac{3}{{2}^{4}-1}+…+\frac{3}{{2}^{2k}-1}$<$\frac{3}{2}+\frac{3}{{2}^{3}}+…+\frac{3}{{2}^{2k-1}}$,
Qn中偶数项的和M偶=$\frac{3}{{2}^{3}+1}+\frac{3}{{2}^{5}+1}+…+\frac{3}{{2}^{2k+1}+1}$<$\frac{3}{{2}^{3}}+\frac{3}{{2}^{5}}+…+\frac{3}{{2}^{2k+1}}$,
不妨令n为偶数,则Qn=M奇+M偶
<$\frac{3}{2}+\frac{3}{{2}^{3}}+…+\frac{3}{{2}^{2k-1}}$+$\frac{3}{{2}^{3}}+\frac{3}{{2}^{5}}+…+\frac{3}{{2}^{2k+1}}$
=$3[2×\frac{1}{2}\frac{1-(\frac{1}{4})^{k}}{1-\frac{1}{4}}-\frac{1}{2}+\frac{1}{{2}^{2k+1}}]$
=$3\{\frac{4}{3}[1-(\frac{1}{4})^{k}]-\frac{1}{2}+\frac{1}{{2}^{2k+1}}\}$
<3(n∈N*).
点评 本题考查数列的递推公式,求通项公式,前n项和,考查放缩法,考查分析问题、解决问题的能力,注意解题方法的积累,属于难题.
A. | (1,0) | B. | ($\frac{4}{3}$,0) | C. | ($\frac{5}{3}$,0) | D. | (2,0) |