题目内容

【题目】设集合A=R,集合B={y|y>0},下列对应关系中是从集合A到集合B的映射的是(
A.x→y=|x|
B.x→y=
C.
D.

【答案】C
【解析】解:∵|0|=0,而 0R+ , 集合A中的元素0在集合B中没有像,故选项A 不是映射.
对于选项B,集合A中的元素1在集合B中没有像,故选项B不是映射.
对于选项C,集合A中的所有元素在集合B中都有唯一的像和它对应,故选项C是映射.
对于选项D,由于函数的定义域不是R,故选项D不是映射.
故选 C.
【考点精析】掌握映射的相关定义是解答本题的根本,需要知道对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象;注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的.所以函数是映射,而映射不一定的函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网