题目内容

【题目】如图所示,某公路 一侧有一块空地 ,其中 .当地政府拟在中间开挖一个人工湖△OMN,其中MN都在边AB上(MN不与AB重合,MAN之间),且MON=30°.

(1)若M在距离A2 km处,求点MN之间的距离;

(2)为节省投入资金,人工湖△OMN的面积要尽可能小.试确定M的位置,使△OMN的面积最小,并求出最小面积.

【答案】(1) (2)最小面积是

【解析】试题分析:

(1)先利用余弦定理分别求出,再利用角度转化和正弦定理求出;(2)设,利用三角形之间的正余弦定理转化应用,解得,应用函数化简技巧,解得最小值

试题解析:

(1)在△OAB中,因为OA=3,OB=3,∠AOB=90°,所以∠OAB=60°.

在△OAM中,由余弦定理得OM2AO2AM2-2AO·AM·cosA=7,

所以OM,所以cos∠AOM

在△OAN中,sin∠ONA=sin(∠A+∠AON)= sin(∠AOM+90°)=cos∠AOM

在△OMN中,由,得MN×

(2)解法1:设AMx,0<x<3.

在△OAM中,由余弦定理得OM2AO2AM2-2AO·AM·cosAx2-3x+9,

所以OM,所以cos∠AOM

在△OAN中,sin∠ONA=sin(∠A+∠AON)= sin(∠AOM+90°)

=cos∠AOM

,得ON·

所以SOMNOM·ON·sin∠MON···

,0<x<3.

6-xt,则x=6-t,3<t<6,则SOMN (t-9+)

·(2-9)=

当且仅当t,即t=3x=6-3时等号成立SOMN的最小值为

所以M的位置为距离A6-3 km处,可使△OMN的面积最小,最小面积是

km2

解法2:设∠AOMθ,0<θ

在△OAM中,由,得OM

在△OAN中,由,得ON

所以SOMNOM·ON·sin∠MON···

,0<θ

2θ,即θ时,SOMN的最小值为

所以应设计∠AOM,可使△OMN的面积最小,最小面积是km2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网