题目内容

已知,函数.
(1)求函数的单调区间;
(2)求证:对于任意的,都有.
(1)单调递增区间为,单调递减区间为,;(2)证明过程详见解析.

试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先对求导,利用单调递增,单调递减,通过解不等式,求出函数的单调区间;第二问,由于对于任意的,都有 对于任意的,都有,利用导数判断函数上的单调性,数形结合求出的最小值和的最大值,进行比较,看是否符合.
(1)函数的定义域为,
因为
所以,当,或时,
时,
所以,的单调递增区间为,单调递减区间为,.        6分
(2)因为在区间上单调递增,在区间上单调递减,

所以,当时,
,可得
所以当时,函数在区间上是增函数,
所以,当时,
所以,当时,
对于任意的,都有,所以
时,函数在区间上是增函数,在区间上是减函数,
所以,当时,
所以,当时,
对于任意的,都有,所以
综上,对于任意的,都有.      13分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网