题目内容
【题目】(1)若,恒成立,求实数的最大值;
(2)在(1)的条件下,求证:函数在区间内存在唯一的极大值点,且.
【答案】(1).(2)家粘结性
【解析】
(1)令,求出导函数,由确定增区间,确定减区间,从而得的最小值,得的取值范围,即得;
(2)求出导函数,通分后,令,再求导数,令.分类讨论,当时,,得递减,从而可得在上有唯一零点,时,令.利用导数得的单调性,从而得,于是得出在上的单调性,得唯一极大值点.由可对变形,得,只要证明在上,从而可证得结论.
(1)解:令,则.
可见,;.
故函数在上单调递减,在上单调递增.
所以,当且仅当时,函数取最小值1.
由题意,实数.所以.
(2)由(1),.
令,
则.
令.
①当时,,,,所以.
可见,,所以在上单调递减.
又(由(1),可得,所以),
,所以存在唯一的,使得.
从而,当时,,,单调递增;当时,,,单调递减.
②当时,令.
则.所以在上单调递减.
所以(由(1),可得,所以).
又当时,,,,
所以当时,,从而.所以在单调递增.
综上所述,在上单调递增,在上单词递减.
所以,函数在区间内存在唯一极大值点.
关于的证明如下:
由上面的讨论,,且,所以,所以.
于是.
令.当时,.所以在上单调递增.所以,当时,,即.
又因为,所以,,所以.
所以.
【题目】为了解某地网民浏览购物网站的情况,从该地随机抽取100名网民进行调查,其中男性、女性人数分别为60和40.下面是根据调查结果统计的数据,将日均浏览购物网站时间不低于40分钟的网民称为“网购达人”,已知“网购达人”中女性人数为15人.
日均浏览购物网站时间(分钟) | ||||||
人数 | 2 | 14 | 24 | 35 | 20 | 5 |
(1)根据已知条件完成下面的列联表,并判断是否有99%的把握认为是否为“网购达人”与性别有关;
非网购达人 | 网购达人 | 总计 | |
男 | |||
女 | 15 | ||
总计 |
(2)从上述调查中的“网购达人”中按性别分层抽样,抽取5人发放礼品,再从这5人中随机选出2人作为“最美网购达人”,求这两个“最美网购达人”中恰好为1男1女的概率.
参考公式:,其中.
参考数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |