题目内容
15.如图是函数f(x)=Asin(2x+φ)(A>0,|φ|≤$\frac{π}{2}$)图象的一部分,对不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=$\sqrt{3}$,则φ的值为$\frac{π}{3}$.分析 由最大值求出A,结合图象可得a+b=x1 +x2 .由五点法作图求得a+b=$\frac{π}{2}$-φ,由f(a+b)=2sinφ=f(x1 +x2 )=$\sqrt{3}$,可得sinφ的值,从而求得φ的值.
解答 解:根据函数f(x)=Asin(2x+φ)(A>0,|φ|≤$\frac{π}{2}$)图象的一部分,
可得A=2,周期为$\frac{2π}{2}$=π,∴b-a=$\frac{π}{2}$.
由f(x1)=f(x2),可得函数的图象关于直线x=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{a+b}{2}$对称,故a+b=x1 +x2 .
由五点法作图可得2a+φ=0,2b+φ=π,∴a+b=$\frac{π}{2}$-φ.
结合f(a+b)=f($\frac{π}{2}$-φ)=2sin(π-2φ+φ)=2sinφ=f(x1 +x2 )=$\sqrt{3}$,可得sinφ=$\frac{\sqrt{3}}{2}$,
∴φ=$\frac{π}{3}$,
故答案为:$\frac{π}{3}$.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象特征,属于中档题.
练习册系列答案
相关题目
5.已知$f(x)=\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,若[x]是不超过x的最大整数,则函数y=[f(x)]-[f(-x)]的值域为( )
A. | [-1,0] | B. | {-1,1} | C. | {-1,0,1} | D. | [-1,1] |