题目内容
【题目】已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2﹣2x.
(Ⅰ)写出函数y=f(x)的解析式;
(Ⅱ)若方程f(x)=a恰有3个不同的解,求a的取值范围.
【答案】解:(Ⅰ)当x∈(﹣∞,0)时,﹣x∈(0,+∞),∵y=f(x)是奇函数,
∴f(x)=﹣f(﹣x)=﹣((﹣x)2﹣2(﹣x))=﹣x2﹣2x,
∴ .
(Ⅱ)当x∈[0,+∞)时,f(x)=x2﹣2x=(x﹣1)2﹣1,最小值为﹣1;
∴当x∈(﹣∞,0)时,f(x)=﹣x2﹣2x=1﹣(x+1)2 , 最大值为1.
∴据此可作出函数y=f(x)的图象,根据图象得,
若方程f(x)=a恰有3个不同的解,则a的取值范围是(﹣1,1).
【解析】(Ⅰ)利用函数的奇偶性,利用对称性,写出函数y=f(x)的解析式;(Ⅱ)求出函数f(x)的表达式,利用数形结合的思想求a的取值范围.
练习册系列答案
相关题目
【题目】某研究小组为了研究某品牌智能手机在正常使用情况下的电池供电时间,分别从该品牌手机的甲、乙两种型号中各选取部进行测试,其结果如下:
甲种手机供电时间(小时) | ||||||
乙种手机供电时间(小时) |
(1)求甲、乙两种手机供电时间的平均值与方差,并判断哪种手机电池质量好;
(2)为了进一步研究乙种手机的电池性能,从上述部乙种手机中随机抽取部求这两部手机中恰有一部手机的供电时间大于该种手机供电时间平均值的概率.