题目内容

11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}•\overrightarrow{b}$=2$\sqrt{3}$,则$\overrightarrow{a}$与$\overrightarrow{b}$所成的角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

分析 直接利用向量的数量积求解向量的夹角即可.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}•\overrightarrow{b}$=2$\sqrt{3}$,则$\overrightarrow{a}$与$\overrightarrow{b}$所成的角为θ,
cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{\left|\overrightarrow{a}\right|•\left|\overrightarrow{b}\right|}$=$\frac{2\sqrt{3}}{1×4}$=$\frac{\sqrt{3}}{2}$.
∴θ=$\frac{π}{6}$.
故选:A.

点评 本题考查向量的数量积的应用,向量的夹角的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网