题目内容
给出下列四个命题:
①△ABC中,A>B是sinA>sinB成立的充要条件;
②当x>0且x≠1时,有lnx+
≥2;
③已知Sn是等差数列{an}的前n项和,若S7>S5,则S9>S3;
④若函数y=f(x-
)为R上的奇函数,则函数y=f(x)的图象一定关于点F(
,0)成中心对称.
⑤函数f(x)=cos3x+sin2x-cosx(x∈R)有最大值为2,有最小值为0.
其中所有正确命题的序号为
①△ABC中,A>B是sinA>sinB成立的充要条件;
②当x>0且x≠1时,有lnx+
1 |
lnx |
③已知Sn是等差数列{an}的前n项和,若S7>S5,则S9>S3;
④若函数y=f(x-
3 |
2 |
3 |
2 |
⑤函数f(x)=cos3x+sin2x-cosx(x∈R)有最大值为2,有最小值为0.
其中所有正确命题的序号为
①,③
①,③
.分析:对于①先证充分性;再证必要性;根据对数函数的图象和性质及对勾函数的图象和性质,可以判断②的真假;
等差数列的前n项和的性质,对③进行判断,即可判断③的正误.利用函数的对称性判断④的正误;将函数y=cos3x+sin2x-cosx转化为y=cos3x-cos2x-cosx+1,利用基本不等式,求得最大值.判断正误.
等差数列的前n项和的性质,对③进行判断,即可判断③的正误.利用函数的对称性判断④的正误;将函数y=cos3x+sin2x-cosx转化为y=cos3x-cos2x-cosx+1,利用基本不等式,求得最大值.判断正误.
解答:解:对于①,1°由题意,在△ABC中,“A>B”,由于A+B<π,必有B<π-A
若A,B都是锐角,显然有“sinA>sinB”成立,
若A,B之一为锐角,必是B为锐角,此时有π-A不是钝角,由于A+B<π,必有B<π-A≤
,此时有sin(π-A)=sinA>sinB
综上,△ABC中,“A>B”是“sinA>sinB”成立的充分条件
2°研究sinA>sinB,若A不是锐角,显然可得出A>B,若A是锐角,亦可得出A>B,
综上在△ABC中,“A>B”是“sinA>sinB”成立的必要条件
综合1°,2°知,在△ABC中,“A>B”是“sinA>sinB”成立的充要条件,所以①正确.
对于②当x>0且x≠1时,有lnx+
≥2或lnx+
≤2,故②错误;
对于③,若Sn是等差数列{an}的前n项和,若S7>S5,说明若a4>a3,即公差d>0,则a5>a2,即S9>S3,∴③正确.
对于④,若函数y=f(x-
)为奇函数,则函数y=f(x)的图象关于点F(
,0)成中心对称,命题是假命题.
对于⑤,:∵y=cos3x+sin2x-cosx
=cos3x-cos2x-cosx+1
=cos2x(cosx-1)+(1-cosx)
=(1-cosx)(1-cos2x)
=(1-cosx)(1-cosx)(1+cosx)
=
(1-cosx)(1-cosx)(2+2cosx),
∵1-cosx≥0,2+2cosx≥0,
∴(1-cosx)(1-cosx)(2+2cosx)≤(
)3=
,
当且仅当1-cosx=2+2cosx,即cosx=-
时取“=”.
∴y=
(1-cosx)(1-cosx)(2+2cosx)≤
.
所以⑤不正确.
故答案为:①③.
若A,B都是锐角,显然有“sinA>sinB”成立,
若A,B之一为锐角,必是B为锐角,此时有π-A不是钝角,由于A+B<π,必有B<π-A≤
π |
2 |
综上,△ABC中,“A>B”是“sinA>sinB”成立的充分条件
2°研究sinA>sinB,若A不是锐角,显然可得出A>B,若A是锐角,亦可得出A>B,
综上在△ABC中,“A>B”是“sinA>sinB”成立的必要条件
综合1°,2°知,在△ABC中,“A>B”是“sinA>sinB”成立的充要条件,所以①正确.
对于②当x>0且x≠1时,有lnx+
1 |
lnx |
1 |
lnx |
对于③,若Sn是等差数列{an}的前n项和,若S7>S5,说明若a4>a3,即公差d>0,则a5>a2,即S9>S3,∴③正确.
对于④,若函数y=f(x-
3 |
2 |
3 |
2 |
对于⑤,:∵y=cos3x+sin2x-cosx
=cos3x-cos2x-cosx+1
=cos2x(cosx-1)+(1-cosx)
=(1-cosx)(1-cos2x)
=(1-cosx)(1-cosx)(1+cosx)
=
1 |
2 |
∵1-cosx≥0,2+2cosx≥0,
∴(1-cosx)(1-cosx)(2+2cosx)≤(
(1-cosx)+(1-cosx)+(2+2cosx) |
3 |
64 |
27 |
当且仅当1-cosx=2+2cosx,即cosx=-
1 |
3 |
∴y=
1 |
2 |
32 |
27 |
所以⑤不正确.
故答案为:①③.
点评:本题考查三角函数的最值,函数的周期性,充要条件的应用,基本不等式的应用,考查分析问题解决问题的能力.
练习册系列答案
相关题目