题目内容
【题目】设函数f(x)=|x+2|﹣|x﹣1|.
(1)求不等式f(x)>1解集;
(2)若关于x的不等式f(x)+4≥|1﹣2m|有解,求实数m的取值范围.
【答案】
(1)解:函数f(x)=|x+2|﹣|x﹣1|表示数轴上的x对应点到﹣2对应点的距离减去它到1对应点的距离,
而0对应点到﹣2对应点的距离减去它到1对应点的距离正好等于1,
故不等式f(x)>1解集为{x|x>0}
(2)解:若关于x的不等式f(x)+4≥|1﹣2m|有解,
即|x+2|﹣|x﹣1|+4≥|1﹣m|有解,故|x+2|﹣|x﹣1|+4 的最大值大于或等于|1﹣m|.
利用绝对值的意义可得|x+2|﹣|x﹣1|+4 的最大值为3+4=7,
∴|1﹣m|≤7,故﹣7≤m﹣1≤7,求得﹣6≤m≤8,
m的范围为[﹣6,8]
【解析】(1)由条件利用绝对值的意义求得不等式f(x)>1解集.(2)根据题意可得|x+2|﹣|x﹣1|+4≥|1﹣m|有解,即|x+2|﹣|x﹣1|+4 的最大值大于或等于|1﹣m|,再利用绝对值的意义求得|x+2|﹣|x﹣1|+4 的最大值,从而求得m的范围.
【考点精析】关于本题考查的绝对值不等式的解法,需要了解含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能得出正确答案.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如表:
所用的时间(天数) | 10 | 11 | 12 | 13 |
通过公路l的频数 | 20 | 40 | 20 | 20 |
通过公路2的频数 | 10 | 40 | 40 | 10 |
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发(将频率视为概率).
(1)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(2)若通过公路l、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到;每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车A,B按(I)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.
所以汽车A选择公路1.汽车B选择公路2