题目内容
12.在四面体P-ABC中,PA=PB=PC=1,∠APB=∠BPC=∠CPA=90°则该四面体P-ABC的外接球的表面积为3π.分析 以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P-ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P-ABC外接球的表面积.
解答 解:由题意,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P-ABC外接球.
∵长方体的对角线长为$\sqrt{3}$,
∴球直径为$\sqrt{3}$,半径R=$\frac{\sqrt{3}}{2}$,
因此,三棱锥P-ABC外接球的表面积是4πR2=4π×($\frac{\sqrt{3}}{2}$)2=3π
故答案为:3π.
点评 本题给出三棱锥的三条侧棱两两垂直,求它的外接球的表面积,着重考查了长方体对角线公式和球的表面积计算等知识,属于基础题.
练习册系列答案
相关题目
7.复数z满足(z-2i)(1+i)=|1+$\sqrt{3}i$|(i为虚数单位),则复数z=( )
A. | 1+i | B. | 1-i | C. | 1 | D. | -1 |
17.设全集U=R,已知A={x|$\frac{2x+3}{x-2}$>0},B={x||x-1|<2},则(∁UA)∩B=( )
A. | (-$\frac{3}{2}$,-1) | B. | (-1,-2] | C. | (2,3] | D. | [2,3) |