题目内容
【题目】函数是实数集上的奇函数,当时,
(1)求的值和函数的表达式;
(2)求方程在上的零点个数.
【答案】(1); (2)方程在上有3个零点.
【解析】
(1)利用函数的奇偶性的性质,转化求解.利用函数的奇偶性,求解函数解析式即可.
(2)因为f(2)=log22+2-3=0,所以方程f(x)=0在区间(0,+∞)上有解x=2,又方程f(x)=0可化为log2x=3-x,设函数g(x)=log2x,h(x)=3-x,证明方程g(x)=h(x)在区间(0,+∞)上只有一个解即可.又函数是实数集上的奇函数,所以方程在区间上有解,且,所以方程在上有3个零点.
(1)由题知,函数是实数集上的奇函数,
所以,即.(2分)
又函数是实数集上的奇函数,所以.(3分)
当时,所以,
所以,即.
所以;
(2)易知在区间上为增函数,
因为由零点存在定理,可知方程上有唯一解.
又函数是实数集上的奇函数,所以方程在区间上有解,
且,所以方程在上有3个零点.
【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.
(I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;
(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为 (单位: 元),将该频率视为概率,请回答下面问题:
某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
【答案】(I)见解析; (Ⅱ)见解析.
【解析】分析:(I)依题意可得甲公司一名推销员的工资与销售件数的关系是一次函数的关系式,而乙公司是分段函数的关系式,由此解得;(Ⅱ)分别根据条形图求得甲、乙公司一名推销员的日工资的分布列,从而可分别求得数学期望,进而可得结论.
详解:(I)由题意得,甲公司一名推销员的日工资 (单位:元) 与销售件数的关系式为: .
乙公司一名推销员的日工资 (单位: 元) 与销售件数的关系式为:
(Ⅱ)记甲公司一名推销员的日工资为 (单位: 元),由条形图可得的分布列为
122 | 124 | 126 | 128 | 130 | |
0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
记乙公司一名推销员的日工资为 (单位: 元),由条形图可得的分布列为
120 | 128 | 144 | 160 | |
0.2 | 0.3 | 0.4 | 0.1 |
∴
∴仅从日均收入的角度考虑,我会选择去乙公司.
点睛:求解离散型随机变量的数学期望的一般步骤为:
第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;
第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;
第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;
第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值
【题型】解答题
【结束】
19
【题目】如图,在四棱锥中,底面为菱形, 平面, , , , 分别是, 的中点.
(1)证明: ;
(2)设为线段上的动点,若线段长的最小值为,求二面角的余弦值.
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:,