题目内容

数列{an}的前n项和Sn,当n≥1时,Sn+1是an+1与Sn+1+k的等比中项(k≠0).
(1)求证:对于n≥1有
1
Sn
-
1
Sn+1
=
1
k

(2)设a1=-
k
2
,求Sn
(3)对n≥1,试证明:S1S2+S2S3+…+SnSn+1
k2
2
.
分析:(1)由题意知Sn+12=(Sn+1-Sn)(Sn+1+k),-Sn+1Sn+k(Sn+1-Sn)=0,等式两边同除Sn+1Sn得:-1+k(
1
Sn
-
1
Sn+1
)=0

由此可知
1
Sn
-
1
Sn+1
=
1
k

(2)由(1)知:
1
Sn
=-
n+1
k
,由此可知Sn=-
k
n+1

(3)S1S2+S2S3+…+SnSn+1=
k2
2•3
+
k2
3•4
++
k2
(n+1)(n+2)
=k2[(
1
2
-
1
3
)+(
1
3
-
1
4
)++(
1
n+1
-
1
n+2
)]
=k2(
1
2
-
1
n+2
)<
k2
2
解答:证明:(1)由Sn+12=an+1•(Sn+1+k)而an+1=Sn+1-Sn
∴Sn+12=(Sn+1-Sn)(Sn+1+k)
∴-Sn+1Sn+k(Sn+1-Sn)=0
等式两边同除Sn+1Sn得:-1+k(
1
Sn
-
1
Sn+1
)=0

1
Sn
-
1
Sn+1
=
1
k
;(4分)
(2)由(1)知:{
1
Sn
}是以-
2
k
为首项,
-1
k
为公差的等差数列,
1
Sn
=-
n+1
k

Sn=-
k
n+1
;(8分)
(3)S1S2+S2S3+…+SnSn+1
=
k2
2•3
+
k2
3•4
++
k2
(n+1)(n+2)

=k2[(
1
2
-
1
3
)+(
1
3
-
1
4
)++(
1
n+1
-
1
n+2
)]

=k2(
1
2
-
1
n+2
)<
k2
2
.(12分)
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网