题目内容
数列{an}的前n项和Sn,当n≥1时,Sn+1是an+1与Sn+1+k的等比中项(k≠0).(1)求证:对于n≥1有
1 |
Sn |
1 |
Sn+1 |
1 |
k |
(2)设a1=-
k |
2 |
(3)对n≥1,试证明:S1S2+S2S3+…+SnSn+1<
k2 |
2 |
分析:(1)由题意知Sn+12=(Sn+1-Sn)(Sn+1+k),-Sn+1Sn+k(Sn+1-Sn)=0,等式两边同除Sn+1Sn得:-1+k(
-
)=0
由此可知
-
=
.
(2)由(1)知:
=-
,由此可知Sn=-
.
(3)S1S2+S2S3+…+SnSn+1=
+
++
=k2[(
-
)+(
-
)++(
-
)]=k2(
-
)<
.
1 |
Sn |
1 |
Sn+1 |
由此可知
1 |
Sn |
1 |
Sn+1 |
1 |
k |
(2)由(1)知:
1 |
Sn |
n+1 |
k |
k |
n+1 |
(3)S1S2+S2S3+…+SnSn+1=
k2 |
2•3 |
k2 |
3•4 |
k2 |
(n+1)(n+2) |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
1 |
2 |
1 |
n+2 |
k2 |
2 |
解答:证明:(1)由Sn+12=an+1•(Sn+1+k)而an+1=Sn+1-Sn
∴Sn+12=(Sn+1-Sn)(Sn+1+k)
∴-Sn+1Sn+k(Sn+1-Sn)=0
等式两边同除Sn+1Sn得:-1+k(
-
)=0
∴
-
=
;(4分)
(2)由(1)知:{
}是以-
为首项,
以
为公差的等差数列,
∴
=-
∴Sn=-
;(8分)
(3)S1S2+S2S3+…+SnSn+1
=
+
++
=k2[(
-
)+(
-
)++(
-
)]
=k2(
-
)<
.(12分)
∴Sn+12=(Sn+1-Sn)(Sn+1+k)
∴-Sn+1Sn+k(Sn+1-Sn)=0
等式两边同除Sn+1Sn得:-1+k(
1 |
Sn |
1 |
Sn+1 |
∴
1 |
Sn |
1 |
Sn+1 |
1 |
k |
(2)由(1)知:{
1 |
Sn |
2 |
k |
以
-1 |
k |
∴
1 |
Sn |
n+1 |
k |
∴Sn=-
k |
n+1 |
(3)S1S2+S2S3+…+SnSn+1
=
k2 |
2•3 |
k2 |
3•4 |
k2 |
(n+1)(n+2) |
=k2[(
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
=k2(
1 |
2 |
1 |
n+2 |
k2 |
2 |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目