题目内容

设等比数列{an}的公比q≠1,Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,Tn(k)表示{an}的前n项中除去第k项后剩余的n-1项的乘积,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),则数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)
分析:由题设知
Tn
Tn(1)+Tn(2)+…+Tn(n)
=
a1•(1-q1-n)
1-q-1
,Sn=
a1(1-qn)
1-q
,故
SnTn
Tn(1)+Tn(2)+…+Tn(n)
=
a12(1+q-qn-q1-n)
2-q-q-1
,由此能求出数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和.
解答:解:∵等比数列{an}的公比q≠1,
Sn表示数列{an}的前n项的和,Tn表示数列{an}的前n项的乘积,
Tn(k)=
Tn
ak
(n,k∈N+,k≤n),
Tn
Tn(1)+Tn(2)+…+Tn(n)

=
a1×a2×a3×…×an
a2×a3×…×an+a1×a3×…×an+a1×a2×…×an-1

=
a1nq
n(n-1)
2
a1n-1q
n(n-1)
2
+a1n-1q
(n-2)(n+1)
2
+…+a1n-1•q
(n-2)(n-1)
2

=
a1
1+q-1+q-2+…+q1-n

=
a1•(1-q1-n)
1-q-1

∵Sn=
a1(1-qn)
1-q

SnTn
Tn(1)+Tn(2)+…+Tn(n)
=
a12(1+q-qn-q1-n)
2-q-q-1

数列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n项的和
S=
a12
2-q-q-1
[(1+q-q-1)+(1+q-q2-q-1)+(1+q-q3-q-2)+…+(1+q-qn-q1-n)]
=
a12
2-q-q-1
[n+nq-
q(1-qn)
1-q
-
q-1(1-q1-n)
1-q-1
]
=
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
).
故答案为:
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
).
点评:本题考查数列的前n项和的求法,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网