题目内容
已知Sn是数列{an}的前n项和,an>0,Sn=
,n∈N*,
(1)求证:{an}是等差数列;
(2)若数列{bn}满足b1=2,bn+1=2an+bn,求数列{bn}的通项公式bn.
| ||
2 |
(1)求证:{an}是等差数列;
(2)若数列{bn}满足b1=2,bn+1=2an+bn,求数列{bn}的通项公式bn.
分析:(1)由Sn=
,知a1=1,Sn=
,Sn-1=
,故(an+an-1)(an-an-1-1)=0,由此能够证明{an}是等差数列.
(2)由(1)知an=n,bn+1=2an+bn,由此利用累加法能够求出数列{bn}的通项公式bn.
| ||
2 |
| ||
2 |
a2n-1+an-1 |
2 |
(2)由(1)知an=n,bn+1=2an+bn,由此利用累加法能够求出数列{bn}的通项公式bn.
解答:(本小题满分15分)
解:(1)∵Sn=
,n∈N*,
∴当n=1时,2a1=a12+a1,
解得a1=1或a1=0(舍去)…(2分)
当n≥2时,Sn=
…①
Sn-1=
…②
①-②得:a2n-a2n-1-an-an-1=0…(2分)
∴(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1.
所以{an}是等差数列.…(3分)
(2)由(1)知an=1+(n-1)×1=n…(1分)
bn+1=2an+bn,
b2-b1=2,
b3-b2=22,
…
bn-bn-1=2n-1,
以上各式相加得:bn-b1=2+22+…+2n-1=
…(6分)
∴bn=2n…(1分)
解:(1)∵Sn=
| ||
2 |
∴当n=1时,2a1=a12+a1,
解得a1=1或a1=0(舍去)…(2分)
当n≥2时,Sn=
| ||
2 |
Sn-1=
a2n-1+an-1 |
2 |
①-②得:a2n-a2n-1-an-an-1=0…(2分)
∴(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1.
所以{an}是等差数列.…(3分)
(2)由(1)知an=1+(n-1)×1=n…(1分)
bn+1=2an+bn,
b2-b1=2,
b3-b2=22,
…
bn-bn-1=2n-1,
以上各式相加得:bn-b1=2+22+…+2n-1=
2(1-2n-1) |
1-2 |
∴bn=2n…(1分)
点评:本题考查等差数列的证明,考查数列的通项公式的求法.解题时要认真审题,仔细解答,注意累加法的合理运用.
练习册系列答案
相关题目