题目内容

【题目】已知椭圆 )的离心率为,以椭圆的四个顶点为顶点的四边形的面积为8.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,斜率为的直线与椭圆交于 两点,点在直线的左上方.若,且直线 分别与轴交于 点,求线段的长度.

【答案】(1)(2)

【解析】试题分析: (1)由已知条件求出 的值,得出椭圆方程; (2)设直线 的方程, 联立直线与椭圆方程,求出两根之和,两根之积,求出 ,得到为等腰直角三角形,求出线段 的长.

试题解析:(1)由题意知,解之,得.

所以椭圆的方程为

(2)设直线

代入中,化简整理,得

,得

于是有

注意到

上式中,分子

从而, ,由,可知

所以是等腰直角三角形, ,即为所求.

点睛:本题主要考查了求椭圆方程以及直线与椭圆相交时求另一线段的长,计算量比较大,属于中档题.解题思路:在(1)中,直接由已知条件得出;在(2)中,通过求出,而,得出,得到为等腰直角三角形,再求出线段 的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网