题目内容

5.设m,n是两条不同的直线,α,β是两个不同的平面,则(  )
A.若m∥α,m∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m⊥α,m∥β,则α⊥βD.若m∥α,n?α,则m∥n

分析 A.若m∥α,m∥β,则α∥β,可由面面平行的条件判断;
B.m∥α,m∥n,则n∥α,或n?α;
C.若m⊥α,m∥β,则α⊥β,可由面面垂直的判断定理作出判断;
D.m∥α,n?α,则m∥n或m,n异面.

解答 解:A.若m∥α,m∥β,则α∥β;此命题错误,因为两个平面平行于同一条直线不能保证两个平面平行,故不正确;
B.m∥α,m∥n,则n∥α,或n?α,故不正确;
C.若m⊥α,m∥β,则α⊥β;此命题正确,因为m∥β,则一定存在直线n在β,使得m∥n,又m⊥α可得出n⊥α,由面面垂直的判定定理知,α⊥β,正确;
D.m∥α,n?α,则m∥n或m,n异面,故不正确.
故选:C.

点评 本题考查平面与平面之间的位置关系,空间中两个平面的位置关系主要有相交与平行,相交中比较重要的位置关系是两面垂直,本题考查了利用基础理论作出推理判断的能力,是立体几何中的基本.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网