题目内容
【题目】已知的三边分别为所对的角分别为,且三边满足,已知的外接圆的面积为,设.则的取值范围为______,函数的最大值的取值范围为_______.
【答案】
【解析】
化简已知等式结合余弦定理可得角B,然后利用基本不等式可得a+c的范围,再利用配方可得函数f(x)的最大值,由a+c的范围即得f(x)最大值的范围.
由,可知c(b+c)+a(a+b)=(a+b)(b+c),
化简得,由余弦定理可得cosB=,又B∈(0,π),B=,
因为,解得R=,
由 ,解得b=3,
由余弦定理得,
由基本不等式可得,解得a+c≤6,根据两边之和大于第三边可得a+c>3,即a+c得取值范围是;
=-+4(a+c)sinx+2=-2
又-1≤sinx≤1,可知sinx=1时,函数f(x)的最大值为4(a+c),
函数的最大值的取值范围为
故答案为:(1) (2)
练习册系列答案
相关题目
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响.对近六年的年宣传费和年销售量()的数据作了初步统计,得到如下数据:
年份 | ||||||
年宣传费(万元) | ||||||
年销售量(吨) |
经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式().对上述数据作了初步处理,得到相关的值如表:
(1)根据所给数据,求关于的回归方程;
(2)已知这种产品的年利润与,的关系为若想在年达到年利润最大,请预测年的宣传费用是多少万元?
附:对于一组数据,,…,,其回归直线中的斜率和截距的最小二乘估计分别为,