题目内容
8.已知数列{an}的前n项和为Sn,a1=1,an+an+1=2n-1,则Sn=$\left\{\begin{array}{l}{\frac{n(n-1)}{2},n为偶数}\\{\frac{{n}^{2}-n+2}{2},n为奇数}\end{array}\right.$.分析 确定奇数项、偶数项均以2为公差的等差数列,可得a2n-1=2n-1,a2n=2n-2,再分类讨论,即可得出结论.
解答 解:∵数列{an}满足a1=1,an+an+1=2n-1,
即有an-1+an=2n-3,n>1.
两式相减可得,an+1-an-1=2,
∴奇数项、偶数项均以2为公差的等差数列,
∴a2n-1=2n-1,a2n=2n-2,
n=2k时,Sn=$\frac{k(1+2k-1)}{2}$+$\frac{k}{2}$(0+2k-2)
=2k2-k=$\frac{n(n-1)}{2}$;
n=2k-1时,Sn=S2k-a2k=2k2-k-2k+2=2k2-3k+2=$\frac{{n}^{2}-n+2}{2}$,
∴Sn=$\left\{\begin{array}{l}{\frac{n(n-1)}{2},n为偶数}\\{\frac{{n}^{2}-n+2}{2},n为奇数}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{\frac{n(n-1)}{2},n为偶数}\\{\frac{{n}^{2}-n+2}{2},n为奇数}\end{array}\right.$.
点评 本题考查数列的通项与求和,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
3.下列直线是函数y=log2x和y=log${\;}_{\frac{1}{2}}$4x的图象对称轴的为( )
A. | x=1 | B. | x=-1 | C. | y=1 | D. | y=-1 |
20.已知an=cos$\frac{2nπ}{3}$,Sn是数列{an}的前n项和,则S2015=( )
A. | -2 | B. | -1 | C. | 0 | D. | 1 |