题目内容
已知
,函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232137527541304.png)
(1)当
时,求函数
在点(1,
)的切线方程;
(2)求函数
在[-1,1]的极值;
(3)若在
上至少存在一个实数x0,使
>g(xo)成立,求正实数
的取值范围。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752708399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232137527541304.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752770337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752957447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752973411.png)
(2)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752957447.png)
(3)若在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753020547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753035500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753051283.png)
(Ⅰ) 函数
在点(1,
)的切线方程为
(Ⅱ)
时,极大值为
,无极小值
时 极大值是
,极小值是
(Ⅲ)(![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753238484.png)
,
)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752957447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752973411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753098711.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753129507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753144632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753160416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753207382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753222547.png)
(Ⅲ)(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753238484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753254169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753269335.png)
本试题中导数在研究函数中的运用。(1)中
,那么当
时,
又
所以函数
在点(1,
)的切线方程为
;(2)中令
有 ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753410413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753519544.png)
对a分类讨论
,和
得到极值。(3)中,设
,
,依题意,只需
那么可以解得。
解:(Ⅰ)∵
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753285781.png)
∴ 当
时,
又
∴ 函数
在点(1,
)的切线方程为
--------4分
(Ⅱ)令
有 ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753410413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753519544.png)
① 当
即
时
故
的极大值是
,极小值是![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753222547.png)
② 当
即
时,
在(-1,0)上递增,在(0,1)上递减,则
的极大值为
,无极小值。
综上所述
时,极大值为
,无极小值
时 极大值是
,极小值是
----------8分
(Ⅲ)设
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753597699.png)
对
求导,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232137547041184.png)
∵
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213754782985.png)
∴
在区间
上为增函数,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213754845862.png)
依题意,只需
,即
解得
或
(舍去)
则正实数
的取值范围是(![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753238484.png)
,
)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753285781.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752770337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753316510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753332482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752957447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752973411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753098711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753394551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753410413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753519544.png)
对a分类讨论
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753160416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753129507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232137535661355.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753597699.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753612962.png)
解:(Ⅰ)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753706982.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753285781.png)
∴ 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752770337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753316510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753332482.png)
∴ 函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752957447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752973411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753098711.png)
(Ⅱ)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753394551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753410413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753519544.png)
① 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753940569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753160416.png)
![]() | (-1,0) | 0 | (0,![]() | ![]() | (![]() |
![]() | + | 0 | - | 0 | + |
![]() | ![]() | 极大值 | ![]() | 极小值 | ![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752957447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753207382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753222547.png)
② 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213754252496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753129507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752957447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752957447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753144632.png)
综上所述
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753129507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753144632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753160416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753207382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753222547.png)
(Ⅲ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232137545641371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753597699.png)
对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213754595473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232137547041184.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213754720694.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213752708399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213754782985.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213754595473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213754829578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213754845862.png)
依题意,只需
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753612962.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213755110662.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213755235604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213755250572.png)
则正实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753051283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753238484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753254169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823213753269335.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目