题目内容
【题目】已知函数,其中.
(1)设,讨论的单调性;
(2)若函数在内存在零点,求的范围.
【答案】(1)见解析;(2)的取值范围是.
【解析】试题分析:(1)求导可以得到,分三种情况讨论导数的符号.(2)计算可以得到,其导数为,我们需要讨论的符号,故需再构建新函数,其导数为,结合原函数的形式和的形式,我们发现当时恒成立;当时, 在上有极小值点 ,结合可知 在上有零点;当时, 恒成立,结合可知, 在上也是恒成立的,故而在上递增恒成立.
解析:(1)定义域
故 则
若,则 在 上单调递减;
若,则 .
(i) 当 时,则 ,因此在 上恒有 ,即 在 上单调递减;
(ii)当时, ,因而在上有,在上有 ;因此 在 上单调递减,在单调递增.
(2)设 ,
,设,
则 .
先证明一个命题:当时, .令, ,故在上是减函数,从而当时, ,故命题成立.
若 ,由 可知, .,故 ,对任意都成立,故 在上无零点,因此.
(ii)当,考察函数 ,由于 在 上必存在零点.设在 的第一个零点为,则当时, ,故 在 上为减函数,又 ,
所以当 时, ,从而 在 上单调递减,故在 上恒有 。即 ,注意到 ,因此,令时,则有,由零点存在定理可知函数 在 上有零点,符合题意.
(iii)若,则由 可知, 恒成立,从而 在 上单调递增,也即 在上单调递增,因此,即在 上单调递增,从而恒成立,故方程 在 上无解.
综上可知, 的取值范围是 .
【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分,为了解网络外卖在市的普及情况, 市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格(单位:人).
(1)根据表中数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?
(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出了3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;
②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |