题目内容
【题目】孙子定理是中国古代求解一次同余式组的方法,是数论中一个重要定理,最早可见于中国南北朝时期的数学著作《孙子算经》,年英国来华传教士伟烈亚力将其问题的解法传至欧洲,年英国数学家马西森指出此法符合年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.这个定理讲的是一个关于整除的问题,现有这样一个整除问题:将至这个整数中能被除余且被除余的数按由小到大的顺序排成一列构成一数列,则此数列的项数是( )
A.B.C.D.
【答案】D
【解析】
列举出该数列的前几项,可知该数列为等差数列,求出等差数列的首项和公差,进而可得出数列的通项公式,然后求解满足不等式的正整数的个数,即可得解.
设所求数列为,该数列为、、、、,
所以,数列为等差数列,且首项为,公差为,
所以,,
解不等式,即,解得,
则满足的正整数的个数为,
因此,该数列共有项.
故选:D.
【题目】某市数学教研室对全市2018级15000名的高中生的学业水平考试的数学成绩进行调研,随机选取了200名高中生的学业水平考试的数学成绩作为样本进行分析,将结果列成频率分布表如下:
数学成绩 | 频数 | 频率 |
5 | 0.025 | |
15 | 0.075 | |
50 | 0.25 | |
70 | 0.35 | |
45 | 0.225 | |
15 | 0.075 | |
合计 | 200 | 1 |
根据学业水平考试的数学成绩将成绩分为“优秀”、“合格”、“不合格”三个等级,其中成绩大于或等于80分的为“优秀”,成绩小于60分的为“不合格”,其余的成绩为“合格”.
(1)根据频率分布表中的数据,估计全市学业水平考试的数学成绩的众数、中位数(精确到0.1);
(2)市数学教研员从样本中又随机选取了名高中生的学业水平考试的数学成绩,如果这
(3)估计全市2018级高中生学业水平考试“不合格”的人数.