ÌâÄ¿ÄÚÈÝ

10£®ÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=1£¬µãAn£¨n£¬$\frac{{a}_{n+1}}{{a}_{n}}$£©ÔÚÖ±Ïßy=kx+1ÉÏ£¬µ±n¡Ý2ʱ£¬¾ùÓÐ$\frac{{a}_{n+1}}{{a}_{n}}$-1=$\frac{{a}_{n}}{{a}_{n-1}}$£®
£¨1£©Çó{an}µÄͨÏʽ£»      
£¨2£©Éèbn=$\frac{2{a}_{n}}{£¨n-1£©!}$•3n£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍSn£®

·ÖÎö £¨1£©½«µãAn£¨n£¬$\frac{{a}_{n+1}}{{a}_{n}}$£©´úÈëÖ±Ïß·½³Ìy=kx+1ÉÏ£¬½áºÏn=1¡¢n=2¿ÉµÃ$\frac{{a}_{n}}{{a}_{n-1}}$=n£¬´Ó¶øan=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}•¡­•\frac{{a}_{2}}{{a}_{1}}•{a}_{1}$=n£¡£»
£¨2£©Í¨¹ýbn=$\frac{2{a}_{n}}{£¨n-1£©!}$•3n¡¢an=n£¡£¬¿ÉÖªbn=2n•3n£¬´Ó¶ø¿ÉµÃSnÓë3SnµÄ²»µÈʽ£¬ÀûÓôíλÏà¼õ·¨¼°µÈ±ÈÊýÁеÄÇ°nÏîºÍ¹«Ê½¼ÆËã¼´µÃ½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßµãAn£¨n£¬$\frac{{a}_{n+1}}{{a}_{n}}$£©ÔÚÖ±Ïßy=kx+1ÉÏ£¬
¡à$\frac{{a}_{3}}{{a}_{2}}$=2k+1ÇÒ$\frac{{a}_{2}}{{a}_{1}}$k+1£¬
¡àµ±n=1»òn=2ʱÓÐ$\frac{{a}_{3}}{{a}_{2}}$-$\frac{{a}_{2}}{{a}_{1}}$=k£¬
¡ßµ±n=2ʱ£¬ÓÐ$\frac{{a}_{3}}{{a}_{2}}$-$\frac{{a}_{2}}{{a}_{1}}$=1£¬
¡àk=1£¬
¡à$\frac{{a}_{2}}{{a}_{1}}$=k+1=2£¬
ÓÖ¡ß$\frac{{a}_{n+1}}{{a}_{n}}$-1=$\frac{{a}_{n}}{{a}_{n-1}}$£¬
¡à$\frac{{a}_{n+1}}{{a}_{n}}$-$\frac{{a}_{n}}{{a}_{n-1}}$=1£¬
¡à{$\frac{{a}_{n}}{{a}_{n-1}}$}ÊÇÒÔ2ΪÊ×Ïî¡¢1Ϊ¹«²îµÄµÈ²îÊýÁУ¬
¡à$\frac{{a}_{n}}{{a}_{n-1}}$=n£¬
¡àan=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}•¡­•\frac{{a}_{2}}{{a}_{1}}•{a}_{1}$=n£¡£»
£¨2£©¡ßbn=$\frac{2{a}_{n}}{£¨n-1£©!}$•3n£¬an=n£¡£¬
¡àbn=$\frac{2¡Án£¡}{£¨n-1£©£¡}•{3}^{n}$=2n•3n£¬
¡ßSn=1¡Á2¡Á3+2¡Á2¡Á32+3¡Á2¡Á33+¡­+£¨n-1£©¡Á2¡Á3n-1+n¡Á2¡Á3n£¬
¡à3Sn=1¡Á2¡Á32+2¡Á2¡Á33+¡­+£¨n-1£©¡Á2¡Á3n+n¡Á2¡Á3n+1£¬
Á½Ê½Ïà¼õ£¬µÃ-2Sn=1¡Á2¡Á3+1¡Á2¡Á32+1¡Á2¡Á33+¡­+1¡Á2¡Á3n-1+1¡Á2¡Á3n-n¡Á2¡Á3n+1
=2£¨3+32+33+¡­+3n-1+3n£©-n¡Á2¡Á3n+1
=$2¡Á\frac{3¡Á£¨1-{3}^{n}£©}{1-3}$-n¡Á2¡Á3n+1
=$2¡Á\frac{3}{2}¡Á{£¨3}^{n}-1£©$-n¡Á2¡Á3n+1£¬
¡àSn=n¡Á3n+1-$\frac{3}{2}¡Á£¨{3}^{n}-1£©$
=$£¨n-\frac{1}{2}£©¡Á{3}^{n+1}$+$\frac{3}{2}$£®

µãÆÀ ±¾Ì⿼²éÇóÊýÁеÄͨÏǰnÏîºÍ£¬ÀûÓôíλÏà¼õ·¨Êǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø