题目内容
18.已知max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$ 设实数x,y满足$\left\{\begin{array}{l}{x+2y≤6}\\{2x+y≤6}\\{x≥0,y≥0}\end{array}\right.$则max{2x+3y-1,x+2y+2}的取值范围是( )A. | [2,9] | B. | [-1,9] | C. | [-1,8] | D. | [2,8] |
分析 作出不等式组对应的平面区域,利用作差法求出z的表达式,然后根据平移,根据数形结合即可得到结论.
解答 解:作出不等式组对应的平面区域如图:
2x+3y-1-(x+2y+2)=x+y-3,
即z=max{2x+3y-1,x+2y+2}=$\left\{\begin{array}{l}{2x+3y-1,x+y-3≥0}\\{x+2y+2,x+y-3<0}\end{array}\right.$,
其中直线x+y-3=0过A,C点.
在直线x+y-3=0的上方,平移直线z=2x+3y-1(红线),当直线z=2x+3y-1经过点B(2,2)时,
直线z=2x+3y-1的截距最大,
此时z取得最大值为z=2×2+3×2-1=9.
在直线x+y-3=0的下方,平移直线z=x+2y+2(蓝线),当直线z=x+2y+2经过点O(0,0)时,
直线z=x+2y+2的截距最小,
此时z取得最小值为z=0+2=2.
即2≤z≤9,
故选:A.
点评 本题主要考查线性规划的应用,根据z的几何意义确定对应的直线方程是截距本题的关键,难度较大.
练习册系列答案
相关题目
8.各位数字之和为8的正整数(如8,17,224)按从小到大的顺序构成数列{an},若an=2015,则n=( )
A. | 56 | B. | 72 | C. | 83 | D. | 124 |
6.已知i为虚数单位,则i7=( )
A. | 1 | B. | -1 | C. | i | D. | -i |
13.已知i为虚数单位,则i2015=( )
A. | 1 | B. | -2 | C. | i | D. | -i |
3.已知集合M={x|y=ln(1-2x)},集合N={y|y=ex-3,x∈R},则∁RM∩N=( )
A. | {x|x$≥\frac{1}{2}$} | B. | {y|y>0} | C. | {x|0<x<$\frac{1}{2}$} | D. | {x|x<0} |
7.已知集合M={x|x2-x=0},N={-1,0},则M∩N=( )
A. | {-1,0,1} | B. | {-1,1} | C. | {0} | D. | φ |