ÌâÄ¿ÄÚÈÝ
15£®ÔÚ¼«×ø±êϵÖУ¬Ö±Ïßl£º¦Ñcos¦È=$\frac{1}{2}$ÓëÇúÏßC£º¦Ñ=2cos¦ÈÏཻÓÚA¡¢BÁ½µã£¬OΪ¼«µã£®£¨1£©Çó¡ÏAOBµÄ´óС£®
£¨2£©Éè°ÑÇúÏßCÏò×óƽÒÆÒ»¸öµ¥Î»ÔÙ¾¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=2x}\\{y¡ä=y}\end{array}\right.$µÃµ½ÇúÏßC¡ä£¬ÉèM£¨x£¬y£©ÎªÇúÏßC¡äÉÏÈÎÒ»µã£¬Çóx2-$\sqrt{3}$xy+2y2µÄ×îСֵ£¬²¢ÇóÏàÓ¦µãMµÄ×ø±ê£®
·ÖÎö £¨1£©°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬Çó³öAC£¬DCµÄÖµ£¬¿ÉµÃ¡ÏAOCµÄÖµ£¬´Ó¶øµÃµ½¡ÏAOB=2¡ÏAOCµÄÖµ£»
£¨2£©È·¶¨ÇúÏßC¡äµÄÖ±½Ç×ø±ê·½³Ì£¬ÀûÓòÎÊý·¨Çóx2-$\sqrt{3}$xy+2y2µÄ×îСֵ£¬²¢ÇóÏàÓ¦µãMµÄ×ø±ê£®
½â´ð ½â£º£¨1£©Ö±ÏߦÑcos¦È=$\frac{1}{2}$¼´x=$\frac{1}{2}$£¬ÇúÏߦÑ=2cos¦È ¼´¦Ñ2=2¦Ñcos¦È£¬¼´£¨x-1£©2+y2=1£¬
±íʾÒÔC£¨1£¬0£©ÎªÔ²ÐÄ£¬ÒÔ1Ϊ°ë¾¶µÄÔ²£®Èçͼ£®
Rt¡÷ADCÖУ¬¡ßcos¡ÏACO=$\frac{CD}{AC}$=$\frac{1}{2}$£¬¡à¡ÏACO=$\frac{¦Ð}{3}$£¬
ÔÚ¡÷AOCÖУ¬AC=OC£¬¡à¡ÏAOC=$\frac{¦Ð}{3}$£¬¡à¡ÏAOB=2¡ÏAOC=$\frac{2¦Ð}{3}$¡£¨5·Ö£©
£¨2£©ÇúÏßC£º£¨x-1£©2+y2=1£¬Ïò×óƽÒÆÒ»¸öµ¥Î»ÔÙ¾¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=2x}\\{y¡ä=y}\end{array}\right.$µÃµ½ÇúÏßC¡äµÄÖ±½Ç×ø±ê·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£¬
ÉèM£¨2cos¦Á£¬sin¦Á£©£¬ËùÒÔx2-$\sqrt{3}$xy+2y2=3+2cos£¨2¦Á+$\frac{¦Ð}{3}$£©
¡à$¦Á=k¦Ð+\frac{¦Ð}{3}$ʱ£¬x2-$\sqrt{3}$xy+2y2µÄ×îСֵΪ1
´ËʱµãMµÄ×ø±êΪ£¨1£¬$\frac{\sqrt{3}}{2}$£©»ò£¨-1£¬-$\frac{\sqrt{3}}{2}$£©¡£¨10·Ö£©
µãÆÀ ±¾Ì⿼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬Ö±ÏߺÍÔ²µÄλÖùØϵ£¬Çó³ö¡ÏACOÊǽâÌâµÄ¹Ø¼ü£®ÊôÓÚÖеµÌ⣮
A£® | $£¨-2\sqrt{3}£¬-2\sqrt{3}£©$ | B£® | $£¨-\sqrt{3}£¬\sqrt{3}£©$ | C£® | $[-2\sqrt{3}£¬2\sqrt{3}]$ | D£® | $[-\sqrt{3}£¬\sqrt{3}]$ |
A£® | 1 | B£® | -1 | C£® | i | D£® | -i |
A£® | {x|x$¡Ý\frac{1}{2}$} | B£® | {y|y£¾0} | C£® | {x|0£¼x£¼$\frac{1}{2}$} | D£® | {x|x£¼0} |
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
£¨¢ò£©ÔÚÒÑÓеÄÎå×éÊý¾ÝÖÐÈÎÒâ³éÈ¡Á½×飬¸ù¾Ý£¨¢ñ£©ÖеÄÏßÐԻع鷽³Ì£¬ÇóÖÁÉÙÓÐÒ»×éÊý¾ÝÆäÔ¤²âÖµÓëʵ¼ÊÖµÖ®²îµÄ¾ø¶ÔÖµ²»³¬¹ý5µÄ¸ÅÂÊ£®
²Î¿¼¹«Ê½£ºb=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$£¬a=$\overline{y}$-b$\overline{x}$£¬ÆäÖÐ$\overline{\;}$$\overline{x}$£¬$\overline{y}$ΪÑù±¾Æ½¾ùÖµ£®
²Î¿¼Êý¾Ý£º$\sum_{i=1}^{5}{x}_{i}^{2}$=145£¬$\sum_{i=1}^{5}{y}_{i}^{2}$=13500£¬$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1380£®
A£® | {-1£¬0£¬1} | B£® | {-1£¬1} | C£® | {0} | D£® | ¦Õ |
A£® | f£¨x£©=$\frac{1}{2x-1}$-x3 | B£® | f£¨x£©=$\frac{1}{2x-1}$+x3 | C£® | f£¨x£©=$\frac{1}{2x+1}$-x3 | D£® | f£¨x£©=$\frac{1}{2x+1}$+x3 |