ÌâÄ¿ÄÚÈÝ

15£®ÔÚ¼«×ø±êϵÖУ¬Ö±Ïßl£º¦Ñcos¦È=$\frac{1}{2}$ÓëÇúÏßC£º¦Ñ=2cos¦ÈÏཻÓÚA¡¢BÁ½µã£¬OΪ¼«µã£®
£¨1£©Çó¡ÏAOBµÄ´óС£®
£¨2£©Éè°ÑÇúÏßCÏò×óƽÒÆÒ»¸öµ¥Î»ÔÙ¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=2x}\\{y¡ä=y}\end{array}\right.$µÃµ½ÇúÏßC¡ä£¬ÉèM£¨x£¬y£©ÎªÇúÏßC¡äÉÏÈÎÒ»µã£¬Çóx2-$\sqrt{3}$xy+2y2µÄ×îСֵ£¬²¢ÇóÏàÓ¦µãMµÄ×ø±ê£®

·ÖÎö £¨1£©°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬Çó³öAC£¬DCµÄÖµ£¬¿ÉµÃ¡ÏAOCµÄÖµ£¬´Ó¶øµÃµ½¡ÏAOB=2¡ÏAOCµÄÖµ£»
£¨2£©È·¶¨ÇúÏßC¡äµÄÖ±½Ç×ø±ê·½³Ì£¬ÀûÓòÎÊý·¨Çóx2-$\sqrt{3}$xy+2y2µÄ×îСֵ£¬²¢ÇóÏàÓ¦µãMµÄ×ø±ê£®

½â´ð ½â£º£¨1£©Ö±ÏߦÑcos¦È=$\frac{1}{2}$¼´x=$\frac{1}{2}$£¬ÇúÏߦÑ=2cos¦È ¼´¦Ñ2=2¦Ñcos¦È£¬¼´£¨x-1£©2+y2=1£¬
±íʾÒÔC£¨1£¬0£©ÎªÔ²ÐÄ£¬ÒÔ1Ϊ°ë¾¶µÄÔ²£®Èçͼ£®
Rt¡÷ADCÖУ¬¡ßcos¡ÏACO=$\frac{CD}{AC}$=$\frac{1}{2}$£¬¡à¡ÏACO=$\frac{¦Ð}{3}$£¬
ÔÚ¡÷AOCÖУ¬AC=OC£¬¡à¡ÏAOC=$\frac{¦Ð}{3}$£¬¡à¡ÏAOB=2¡ÏAOC=$\frac{2¦Ð}{3}$¡­£¨5·Ö£©
£¨2£©ÇúÏßC£º£¨x-1£©2+y2=1£¬Ïò×óƽÒÆÒ»¸öµ¥Î»ÔÙ¾­¹ýÉìËõ±ä»»$\left\{\begin{array}{l}{x¡ä=2x}\\{y¡ä=y}\end{array}\right.$µÃµ½ÇúÏßC¡äµÄÖ±½Ç×ø±ê·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£¬
ÉèM£¨2cos¦Á£¬sin¦Á£©£¬ËùÒÔx2-$\sqrt{3}$xy+2y2=3+2cos£¨2¦Á+$\frac{¦Ð}{3}$£©
¡à$¦Á=k¦Ð+\frac{¦Ð}{3}$ʱ£¬x2-$\sqrt{3}$xy+2y2µÄ×îСֵΪ1
´ËʱµãMµÄ×ø±êΪ£¨1£¬$\frac{\sqrt{3}}{2}$£©»ò£¨-1£¬-$\frac{\sqrt{3}}{2}$£©¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é°Ñ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌµÄ·½·¨£¬Ö±ÏߺÍÔ²µÄλÖùØϵ£¬Çó³ö¡ÏACOÊǽâÌâµÄ¹Ø¼ü£®ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø