题目内容
【题目】已知函数
(1)若,试讨论的单调性;
(2)若,实数为方程的两不等实根,求证:.
【答案】(1)答案不唯一,具体见解析(2)证明见解析
【解析】
(1)根据题意得,分与讨论即可得到函数的单调性;
(2)根据题意构造函数,得,参变分离得,
分析不等式,即转化为,设,再构造函数,利用导数得单调性,进而得证.
(1)依题意,当时,,
①当时,恒成立,此时在定义域上单调递增;
②当时,若,;若,;
故此时的单调递增区间为,单调递减区间为.
(2)方法1:由得
令,则,
依题意有,即,
要证,只需证(不妨设),
即证,
令,设,则,
在单调递减,即,从而有.
方法2:由得
令,则,
当时,时,
故在上单调递增,在上单调递减,
不妨设,则,
要证,只需证,易知,
故只需证,即证
令,(),
则
==,
(也可代入后再求导)
在上单调递减,,
故对于时,总有.由此得
练习册系列答案
相关题目
【题目】为认真贯彻落实党中央国务院决策部署,坚持“房子是用来住的,不是用来炒的”定位,坚持调控政策的连续性和稳定性,进一步稳定某省市商品住房市场,该市人民政府办公厅出台了相关文件来控制房价,并取得了一定效果,下表是2019年2月至6月以来该市某城区的房价均值数据:
(月份) | 2 | 3 | 4 | 5 | 6 |
(房价均价:千元/平方米) | 9.80 | 9.70 | 9.30 | 9.20 |
已知:.
(1)若变量、具有线性相关关系,求房价均价(千元/平方米)关于月份的线性回归方程;
(2)根据线性回归方程预测该市某城区7月份的房价.
(参考公式:用最小二乘法求线性回归方程的系数公式)