题目内容

【题目】下列各组函数是同一函数的是(
①f(x)= 与g(x)=x
②f(x)=|x|与g(x)=
③f(x)=x0与g(x)=
④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1.
A.①②③
B.①③④
C.②③④
D.①②④

【答案】C
【解析】解:①f(x)= ,g(x)=x ,解析式不同,∴f(x)与g(x)不是同一函数;
②∵f(x)=|x|,g(x)= =|x|,故是同一函数;
③f(x)=x0=1(x≠0), ,解析式与定义域、值域相同,故是同一函数.
④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1对应法则和定义域相同,故是同一函数.
综上可知:②③④.
故选C.
【考点精析】掌握判断两个函数是否为同一函数是解答本题的根本,需要知道只有定义域和对应法则二者完全相同的函数才是同一函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网