题目内容

【题目】直线m,n均不在平面α,β内,给出下列命题:
①若m∥n,n∥α,则m∥α;
②若m∥β,α∥β,则m∥α;
③若m⊥n,n⊥α,则m∥α;
④若m⊥β,α⊥β,则m∥α;
则其中正确命题的个数是(  )
A.1
B.2
C.3
D.4

【答案】D
【解析】解:注意前提条件直线m,n均不在平面α,β内.
对于①,根据线面平行的判定定理知,m∥α,故①正确;
对于②,如果直线m与平面α相交,则必与β相交,而这与α∥β矛盾,故m∥α,故②正确;
对于③,在平面α内任取一点A,设过A,m的平面γ与平面α相交于直线b,
∵n⊥α,∴n⊥b,又m⊥n,∴m⊥b,∴m∥α,故③正确;
对于④,设α∩β=l,在α内作m′⊥β,
∵m⊥β,∴m∥m′,∴m∥α,故④正确.
故选:D.
【考点精析】利用空间中直线与直线之间的位置关系对题目进行判断即可得到答案,需要熟知相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网