题目内容
12.若不等式x2-ax+b>0的解集为{x|x<2或x>3},则a+b=11.分析 不等式x2-ax+b>0的解集为{x|x<2或x>3},故3,2是方程x2-ax+b=0的两个根,由根与系数的关系求出a,b可得.
解答 解:由题意不等式x2-ax+b>0的解集为{x|x<2或x>3},故3,2是方程x2-ax+b=0的两个根,
∴3+2=a,3×2=b
∴a=5,b=6
∴a+b=5+6=11
故答案为:11;
点评 本题考查一元二次不等式与一元二次方程的关系,解答本题的关键是根据不等式的解集得出不等式相应方程的根,再由根与系数的关系求参数的值.注意总结方程,函数,不等式三者之间的联系.
练习册系列答案
相关题目
2.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=bx+a;
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{a=\widehat{y}-b\overline{x}}\end{array}\right.$.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=bx+a;
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{a=\widehat{y}-b\overline{x}}\end{array}\right.$.
7.已知a,b,c∈R,且a>b,ab≠0,则下列不等式一定成立的是( )
A. | a3>b3 | B. | ac2>bc2 | C. | $\frac{1}{a}<\frac{1}{b}$ | D. | a2>b2 |
4.函数f(x)=sinx+1导数是( )
A. | cosx | B. | -cosx+1 | C. | cosx+1 | D. | -cosx |