题目内容
4.已知函数f(x)=lnx-$\frac{a}{x}$,g(x)=f(x)+ax-6lnx(a∈R.)(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设函数h(x)=x2-mx+4,当a=2时,若?x1∈(0,1),?x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.
分析 (Ⅰ)f(x)的定义域为(0,+∞),求出函数的导数,当a≥0时,f′(x)>0,f(x)在(x,+∞)上单调递增;当a>0时,由f′(x)>0,得x>-a;由f′(x)<0,得x<-a.由此能够判断f(x)的单调性;
(Ⅱ)当a=2时,g(x)=2x-$\frac{2}{x}$-5lnx,求出函数的导数,由g′(x)=0,得x的值,从而得到函数的单调性,所以在(0,1)上,g(x)max=g($\frac{1}{2}$),由此能求出实数m的取值范围.
解答 解:(Ⅰ)f(x)的定义域为(0,+∞),且f′(x)=$\frac{x+a}{{x}^{2}}$,
①当a≥0时,f′(x)>0,f(x)在(0,+∞)上单调递增;
②当a<0时,由f′(x)>0,得x>-a;由f′(x)<0,得x<-a;
故f(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增.
(Ⅱ)当a=2时,g(x)=2x-$\frac{2}{x}$-5lnx,g′(x)=$\frac{{2x}^{2}-5x+2}{{x}^{2}}$,
由g′(x)=0,得x=$\frac{1}{2}$或x=2.
当x∈(0,$\frac{1}{2}$)时,g′(x)≥0;当x∈($\frac{1}{2}$,1)时,g′(x)<0.
所以在(0,1)上,g(x)max=g($\frac{1}{2}$)=-3+5ln2,
而“?x1∈(0,1),?x2∈[1,2],总有g(x1)≥h(x2)成立”等价于
“g(x)在(0,1)上的最大值不小于h(x)在[1,2]上的最大值”
而h(x)在[1,2]上的最大值为max{h(1),h(2)},
所以有 $\left\{\begin{array}{l}{g(\frac{1}{2})≥h(1)}\\{g(\frac{1}{2})≥h(2)}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-3+5ln2≥5-m}\\{-3+5ln2≥8-2m}\end{array}\right.$,
∴$\left\{\begin{array}{l}{m≥8-5ln2}\\{m≥\frac{1}{2}(11-5ln2)}\end{array}\right.$,
解得m≥8-5ln2,
所以实数m的取值范围是[8-5ln2,+∞).
点评 本题考查在闭区间上求函数最值的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
A. | 27 | B. | 9 | C. | 0 | D. | 1 |
A. | $\frac{\sqrt{15}}{15}$ | B. | -$\frac{\sqrt{210}}{15}$ | C. | $\frac{\sqrt{210}}{15}$ | D. | -$\frac{\sqrt{15}}{15}$ |
A. | $(0,\frac{1}{4})$ | B. | $(0,\frac{{\sqrt{3}}}{2})$ | C. | $(0,\frac{1}{2})$ | D. | ($\frac{1}{4}$,$\frac{\sqrt{3}}{2}$) |
A. | -1 | B. | 1 | C. | 2187 | D. | -2187 |