题目内容
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.
求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
(1)见解析(2)见解析
(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连结NE.
则N,E(0,0,1),A(,,0),M.
∴=,=.
∴=且NE与AM不共线.∴NE∥AM.
∵NE?平面BDE,AM平面BDE,∴AM∥平面BDE.
(2)由(1)知=,
∵D(,0,0),F(,,1),∴=(0,,1),
∴·=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.
则N,E(0,0,1),A(,,0),M.
∴=,=.
∴=且NE与AM不共线.∴NE∥AM.
∵NE?平面BDE,AM平面BDE,∴AM∥平面BDE.
(2)由(1)知=,
∵D(,0,0),F(,,1),∴=(0,,1),
∴·=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.
练习册系列答案
相关题目