题目内容
设a>0,若an=且数列{an}是递增数列,则实数a的范围是__________.
2<a<3
【解析】由{an}是递增数列,得解得∴2<a<3
已知各项均为正数的等比数列{an}的公比为q,且0<q<.
(1)在数列{an}中是否存在三项,使其成等差数列?说明理由;
(2)若a1=1,且对任意正整数k,ak-(ak+1+ak+2)仍是该数列中的某一项.
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,试用S2011表示T2011.
{an}为等比数列,a2=6,a5=162,则{an}的通项公式an=________.
设等差数列{an}的前n项和为Sn,已知a3=5,S3=9.
(1)求首项a1和公差d的值;
(2)若Sn=100,求n的值.
已知an=n×0.8n(n∈N*).
(1)判断数列{an}的单调性;
(2)是否存在最小正整数k,使得数列{an}中的任意一项均小于k?请说明理由.
已知数列{an}的前n项和Sn,求通项an.
(1)Sn=3n-1;
(2)Sn=n2+3n+1.
已知f(x)=若对任意的x∈R,af2(x)≥f(x)-1成立,则实数a的最小值为________.
已知f(x)=(ex-1)2+(e-x-1)2,则f(x)的最小值为________.
已知函数f(x)=x2-3x+m,g(x)=2x2-4x,若f(x)≥g(x)恰在x∈[-1,2]上成立,则实数m的值为________.