题目内容

是定义在R上的奇函数,且对任意,当时,都有.
(1)求证:R上为增函数.
(2)若对任意恒成立,求实数k的取值范围.

(1) 函数,可知f(-x)=-f(x),则不等式,再结合a,b的任意性,和函数单调性定义可得证。
(2) .              13分

解析试题分析:(1)略       4分
(2)由(1)知R上的单调递增函数,                
对任意恒成立,

,         7分
对任意恒成立,       9分
k小于函数的最小值.        11分
,则
.            13分
考点:本试题主要是考查了抽象函数的奇偶性和单调性的综合运用,属于中档题。同时结合不等式的知识考查了分析问题和解决问题的能力。
点评:解决该试题的关键是对于已知中函数为奇函数,能将已知的分式不等式翻译为变量差与对应的函数值差,回归到函数的单调性定义上判定和证明,同时利用第一问的结论,去掉抽象函数的符号,转换为求解指数不等式的问题来得到。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网