题目内容
16.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( )A. | y=|x| | B. | y=-x3 | C. | y=-(x+1)2 | D. | y=-x2 |
分析 根据函数奇偶性和单调性的性质进行判断即可.
解答 解:A.y=|x|是偶函数,在区间(0,+∞)上单调递增,不满足条件.
B.y=-x3是奇函数,不满足条件.
C.y=-(x+1)2是非奇非偶函数,不满足条件.
D.y=-x2是偶函数,在区间(0,+∞)上单调递减,满足条件.
故选:D
点评 本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性.
练习册系列答案
相关题目
6.据《南通日报》报道,2015年1月1日至1月31日,市交管部门共抽查了1000辆车,查出酒后驾车和醉酒驾车的驾驶员80人,如图是对这80人血液中酒精含量进行检查所得结果的频率分布直方图.(酒精含量≥80mg/100ml为醉酒驾车)
(1)根据频率分布直方图完成下表:
(2)根据上述数据,求此次抽查的1000人中属于醉酒驾车的概率;
(3)若用分层抽样的方法从血液酒精浓度在[70,90)范围内的驾驶员中抽取一个容量为5的样本,并将该样本看成一个总体,从中任取2人,求恰有1人属于醉酒驾车的概率.
(1)根据频率分布直方图完成下表:
酒精含量(单位:mg/100ml) | [20,30) | [30,40) | [40,50) | [50,60) |
人数 | 16 | 16 | 4 | |
酒精含量(单位:mg/100ml) | [60,70) | [70,80) | [80,90) | [90,100] |
人数 | 4 |
(3)若用分层抽样的方法从血液酒精浓度在[70,90)范围内的驾驶员中抽取一个容量为5的样本,并将该样本看成一个总体,从中任取2人,求恰有1人属于醉酒驾车的概率.
7.设S=$\sqrt{1+\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}}$+$\sqrt{1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}}$+$\sqrt{1+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}}$+…+$\sqrt{1+\frac{1}{201{4}^{2}}+\frac{1}{201{5}^{2}}}$,则不大于S的最大整数等于( )
A. | 2016 | B. | 2015 | C. | 2014 | D. | 2013 |
8.已知数列{an}的通项公式为an=n+$\frac{c}{n}$,若对任意n∈N+,都有an≥a3,则实数c的取值范围是( )
A. | [6,12] | B. | (6,12) | C. | [5,12] | D. | (5,12) |
5.已知a<b<0,则下列不等式一定成立的是( )
A. | a2<ab | B. | |a|<|b| | C. | $\frac{1}{a}>\frac{1}{b}$ | D. | ${({\frac{1}{2}})^a}<{({\frac{1}{2}})^b}$ |