题目内容
【题目】如图,△ABC的角平分线AD的延长线交它的外接圆于点E.
(1)证明:△ABE∽△ADC;
(2)若△ABC的面积S= ADAE,求∠BAC的大小.
【答案】
(1)证明:由已知△ABC的角平分线为AD,
可得∠BAE=∠CAD
因为∠AEB与∠ACB是同弧上的圆周角,
所以∠AEB=∠ACD
故△ABE∽△ADC
(2)解:(因为△ABE∽△ADC,
所以 ,
即ABAC=ADAE.
又S= ABACsin∠BAC,
且S= ADAE,
故ABACsin∠BAC=ADAE.
则sin∠BAC=1,
又∠BAC为三角形内角,
所以∠BAC=90°.
【解析】(1)要判断两个三角形相似,可以根据三角形相似判定定理进行证明,但注意观察已知条件中给出的是角的关系,故采用判定定理1更合适,故需要再找到一组对应角相等,由圆周角定理,易得满足条件的角.(2)根据(1)的结论,我们可得三角形对应对成比例,由此我们可以将△ABC的面积 转化为S= ABAC,再结合三角形面积公式,不难得到∠BAC的大小.
【题目】电视传媒公司为了解世界杯期间某地区电视观众对《战斗吧足球》节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该节目时间的频率分布直方图:
(注:频率分布直方图中纵轴表示,例如,收看时间在分钟的频率是)
将日均收看该足球节目时间不低于40分钟的观众称为“足球迷”.
(1)根据已知条件完成下面的列联表,并据此资料判断是否可以认为“足球迷”与性别有关?如果有关,有多大把握?
非足球迷 | 足球迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“足球迷”人数为.若每次抽取的结果是相互独立的,求的分布列、均值和方差.
附:,