题目内容

【题目】已知向量,设函数.

(1)求函数的单调递增区间;

(2)在中,边分别是角的对边,角为锐角,若的面积为,求边的长.

【答案】(1);(2).

【解析】

利用二倍角公式和两角和公式对函数解析式化简整理,进而根据正弦函数的性质确

定函数的单调增区间.(2)根据(1)中函数的解析式,根据f(A)+sin(2A﹣)=1,求得A,根据三角形面积公式求得bc的值,利用余弦定理求得a.

(1)由题意得f(x)=sin2x﹣sinxcosx=sin2x=﹣sin(2x+),

2kπ+2x+2kπ+,kZ,

解得:+x+,kZ

所以函数f(x)的单调递增区间为[+,kπ+],kZ

(2)由f(A)+sin(2A﹣)=1得:﹣sin(2A++sin(2A﹣)=1,

化简得:cos2A=﹣

又因为0A,解得:A=

由题意知:SABC=bcsinA=2,解得bc=8,

b+c=7,所以a2=b2+c2﹣2bccosA=(b+c)2﹣2bc(1+cosA)=49﹣2×8×(1+)=25,

a=5

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网