题目内容

(本大题12分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求直线C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG;
(3)求证:平面AA1C⊥面EFG .
(1) ; (2)见解析;(3)见解析。

试题分析:(1)因为平面ABCD,所以与平面ABCD所成角,
然后解三角形求出此角即可.
(2)证明面面平行根据判定定理只须证明平面平面A B1D1内两条相交直线分别平行于平面EFG即可.在证明线面平行时又转化为证明线线平行.
(3)易证:BD平面AA1C,再证明EF//BD,因而可证出平面AA1C⊥面EFG.
(1)∵平面ABCD=C,在正方体ABCD-A1B1C1D1
平面ABCD
∴AC为在平面ABCD的射影
与平面ABCD所成角……….2分
正方体的棱长为
∴AC==
                  ………..4分
(2)在正方体ABCD-A1B1C1D1
连接BD,=
 为平行四边形
∵E,F分别为BC,CD的中点
∴EF∥BD∴EF∥…………3分
∵EF平面GEF,平面GEF
∥平面GEF              …………7分
同理∥平面GEF∵=
∴平面A B1D1∥平面EFG        ……………9分
(3)在正方体ABCD-A1B1C1D1  平面ABCD
∵EF平面ABCD
 EF             …………10分
∵ABCD为正方形
∴ACBD
∵EF∥BD
∴AC EF             ………..11分

∴EF平面AA1C
∵EF平面EFG
∴平面AA1C⊥面EFG        …………….12分.
点评:斜线与平面所成的角就是斜线与它在这个平面内的射影所成的角,因而关键是找到它在这个平面内的射影.面面垂直(平行)证明要转化为证明线面垂直(平行)再转化为线线垂直(平行).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网